Thesis Caracterización del canal inalámbrico a 18 GHz en corredores con quiebre
Loading...
Date
2025-12
Authors
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Electrónica, Mención Telecomunicaciones
Departament
Campus
Campus Casa Central Valparaíso
Abstract
La evolución de las redes móviles hacia la quinta (5G) y sexta generación (6G) impulsa la exploración de nuevas bandas de frecuencia, posicionando al rango de 7 a 24 GHz (FR3) como un punto de equilibrio estratégico entre cobertura y capacidad. Esta memoria presenta una caracterización empírica exhaustiva del canal inalámbrico a 18 GHz en un entorno de interior complejo, consistente en un corredor de hormigón con un quiebre de 90° (L-junction). El objetivo principal fue modelar las pérdidas de propagación y evaluar la viabilidad de esta frecuencia para el despliegue de redes en edificios de construcción sólida. Se llevaron a cabo campañas de medición extensivas utilizando un sistema de sonda de canal basado en analizador de espectro, evaluando escenarios de Línea de Vista (LoS) y Sin Línea de Vista (NLoS) bajo diferentes configuraciones de altura de receptor y posición de transmisor. El procesamiento de datos incluyó la corrección de ganancia de antena variable y la aplicación de promediado móvil para aislar el desvanecimiento a gran escala. El análisis de los modelos de propagación demostró que el modelo Dual-Slope (Doble Pendiente) ofrece el mejor ajuste (RMSE = 3.11 dB), superando al modelo estándar Close-In (CI). Se cuantificó una pérdida por quiebre discreta de 41.15 dB, un valor significativamente superior a lo predicho por los estándares internacionales 3GPP e ITU-R, los cuales subestiman la atenuación en el tramo NLoS en más de 20 dB. Adicionalmente, se determinó que la estabilidad del enlace es críticamente dependiente de la altura del receptor debido al multitrayecto vertical, identificando zonas de interferencia destructiva que deben evitarse. Los resultados concluyen que la implementación de tecnología a 18 GHz es viable, pero requiere estrategias de diseño que consideren densificación de celdas o repetidores para mitigar las severas pérdidas por difracción en las esquinas.
The evolution of mobile networks towards fifth (5G) and sixth generation (6G) drives the exploration of new frequency bands, positioning the 7 to 24 GHz range (FR3) as a strategic balance point between coverage and capacity. This thesis presents a comprehensive empirical characterization of the wireless channel at 18 GHz in a complex indoor environment, consisting of a concrete corridor with a 90◦ turn (L-junction). The main objective was to model propagation losses and evaluate the viability of this frequency for network deployment in solid construction buildings. Extensive measurement campaigns were conducted using a spectrum analyzer-based channel sounder, evaluating Line-of-Sight (LoS) nd Non-Line-of-Sight (NLoS) scenarios under different receiver height and transmitter position configurations. Data processing included variable antenna gain correction and moving average application to isolate large-scale fading. Propagation model analysis demonstrated that the Dual-Slope model offers the best fit (RMSE = 3,23 dB), outperforming the standard Close-In (CI) model. A discrete break loss of 41,22 dB was quantified, a value significantly higher than that predicted by international 3GPP and ITU-R standards, which underestimate attenuation in the NLoS segment by more than 20 dB. Additionally, link stability was determined to be critically dependent on receiver height due to vertical multipath, identifying destructive interference zones that must be avoided. The results conclude that implementation of 18 GHz technology is viable but requires design strategies considering cell densification or repeaters to mitigate severe diffraction losses at corners.
The evolution of mobile networks towards fifth (5G) and sixth generation (6G) drives the exploration of new frequency bands, positioning the 7 to 24 GHz range (FR3) as a strategic balance point between coverage and capacity. This thesis presents a comprehensive empirical characterization of the wireless channel at 18 GHz in a complex indoor environment, consisting of a concrete corridor with a 90◦ turn (L-junction). The main objective was to model propagation losses and evaluate the viability of this frequency for network deployment in solid construction buildings. Extensive measurement campaigns were conducted using a spectrum analyzer-based channel sounder, evaluating Line-of-Sight (LoS) nd Non-Line-of-Sight (NLoS) scenarios under different receiver height and transmitter position configurations. Data processing included variable antenna gain correction and moving average application to isolate large-scale fading. Propagation model analysis demonstrated that the Dual-Slope model offers the best fit (RMSE = 3,23 dB), outperforming the standard Close-In (CI) model. A discrete break loss of 41,22 dB was quantified, a value significantly higher than that predicted by international 3GPP and ITU-R standards, which underestimate attenuation in the NLoS segment by more than 20 dB. Additionally, link stability was determined to be critically dependent on receiver height due to vertical multipath, identifying destructive interference zones that must be avoided. The results conclude that implementation of 18 GHz technology is viable but requires design strategies considering cell densification or repeaters to mitigate severe diffraction losses at corners.
Description
Keywords
Redes móviles, Pérdida de Trayectoria, Modelo Dual-Slope, Propagación en Interiores, Ondas Milimétricas, Caracterización de Canal, FR3
