Thesis Análisis estratégico de la viabilidad ambiental y operativa del uso de hidrógeno verde en camiones caex de la Industria Minera.
Loading...
Date
2024-09
Authors
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Industrial
Departament
Campus
Campus Santiago Vitacura
Abstract
La crisis climática global ha generado una creciente preocupación y urgencia por reducir las emisiones de gases de efecto invernadero (GEI) y mitigar el impacto ambiental de diversas industrias, incluida la minería. En este contexto, la presente memoria se enfoca en analizar el potencial uso del hidrógeno verde como fuente de energía para camiones CAEX en la industria minera chilena, específicamente en operaciones de mina rajo abierto, con el objetivo de evaluar su viabilidad operacional y ambiental.
La minería del cobre, una de las principales actividades económicas de Chile, tiene un impacto significativo en el consumo de combustibles fósiles. En las operaciones de mina rajo abierto, los camiones CAEX son responsables de gran parte del consumo de diésel, con cada camión consumiendo en promedio aproximadamente 1,500,000 de litros de diésel al año, lo que genera alrededor de 3,800 toneladas de CO2 anuales por camión. La implementación de motores duales, que operan con una mezcla de 60% hidrógeno y 40% diésel, se presenta como una opción viable para reducir estas emisiones. Además, actualmente se está utilizando el sistema trolley, que también contribuye a la reducción del consumo de diésel.
Para la proyección de la energía necesaria, se obtuvieron datos de fuentes confiables como el Ministerio de Energía y organismos internacionales. Se compararon dos escenarios: el escenario de referencia basado en el uso exclusivo de diésel y el escenario alternativo que combina el uso de hidrógeno verde con el sistema trolley. La tasa de participación del hidrógeno verde se proyectó a lo largo de los años, considerando una reducción progresiva del consumo de diésel debido a la implementación del sistema trolley. Las proyecciones de emisiones se realizaron para cada año de estudio los cuales son 2025, 2030, 2040 y 2050, logrando así cuantificar el ahorro de emisiones al comparar ambos escenarios.
Los resultados del estudio muestran una reducción significativa en las emisiones de gases de efecto invernadero (GEI) en el escenario alternativo. Para el año 2025, el ahorro de emisiones es mínimo debido a la baja incorporación inicial del hidrógeno verde. Sin embargo, a medida que pasa el tiempo, la reducción de emisiones se vuelve más notable, alcanzando la carbono neutralidad para el año 2048 con el uso combinado del sistema trolley y el hidrógeno verde. Al final del período de estudio, se proyecta un ahorro acumulado de 38,500 kilotoneladas de CO2 equivalente, lo que resalta la eficacia de esta estrategia en la disminución de la huella de carbono en la industria minera.
Además, se lleva a cabo un estudio detallado de los costos operativos, analizando las proyecciones de costos de producción de energía renovable e hidrógeno verde obtenidos de la Estrategia Nacional de Hidrógeno Verde. La proyección de costos del diésel se basó en el informe anual de perspectivas energéticas 2021 de la Energy Information Administration (EIA). Estas proyecciones fueron consideradas para los años 2025, 2030, 2040 y 2050 y se evalúa cómo estos costos afectan la viabilidad operativa de los diferentes escenarios.
Finalmente, se realiza un análisis de los ahorros en costos operativos utilizando el sistema trolley combinado con hidrógeno verde. Los resultados indican que, aunque el escenario base es más rentable en el corto plazo, los costos operativos tienden a incrementarse significativamente a largo plazo. En contraste, el escenario alternativo con hidrógeno verde y el sistema trolley demuestra ser más económico a partir de 2030, debido a la disminución progresiva en los costos de producción de hidrógeno verde y al uso eficiente de la energía renovable.
The global climate crisis has generated growing concern and urgency to reduce greenhouse gas (GHG) emissions and mitigate the environmental impact of various industries, including mining. In this context, this thesis focuses on analyzing the potential use of green hydrogen as an energy source for CAEX trucks in the Chilean mining industry, specifically in open-pit mine operations, with the aim of evaluating its operational and environmental viability. Copper mining, one of Chile's main economic activities, has a significant impact on fossil fuel consumption. In open-pit mine operations, CAEX trucks are responsible for a large part of diesel consumption, with each truck consuming approximately 1,500,000 liters of diesel per year, generating around 3,800 tons of CO2 annually per truck. The implementation of dual-fuel engines, operating with a mixture of 60% hydrogen and 40% diesel, appears as a viable option to reduce these emissions. Additionally, the trolley system, currently in use, also contributes to the reduction of diesel consumption. For the energy projection, data were obtained from reliable sources such as the Ministry of Energy and international organizations. Two scenarios were compared: the reference scenario based on the exclusive use of diesel and the alternative scenario that combines the use of green hydrogen with the trolley system. The participation rate of green hydrogen was projected over the years, considering a progressive reduction in diesel consumption due to the implementation of the trolley system. Emission projections were made for each study year, which are 2025, 2030, 2040, and 2050, thus quantifying the emission savings when comparing both scenarios. The results of the study show a significant reduction in GHG emissions in the alternative scenario. For the year 2025, the emission savings are minimal due to the low initial incorporation of green hydrogen. However, as time progresses, the emission reduction becomes more notable, reaching carbon neutrality by 2048 with the combined use of the trolley system and green hydrogen. By the end of the study period, an accumulated saving of 38,500 kilotons of CO2 equivalent is projected, highlighting the effectiveness of this strategy in reducing the carbon footprint in the mining industry. Furthermore, a detailed study of operational costs is carried out, analyzing the cost projections for the production of renewable energy and green hydrogen obtained from the National Green Hydrogen Strategy. The diesel cost projection was based on the 2021 Annual Energy Outlook report by the Energy Information Administration (EIA). These projections were considered for the years 2025, 2030, 2040, and 2050, evaluating how these costs affect the operational viability of the different scenarios. Finally, an analysis of operational cost savings using the trolley system combined with green hydrogen is performed. The results indicate that, although the base scenario is more profitable in the short term, operational costs tend to increase significantly in the long term. In contrast, the alternative scenario with green hydrogen and the trolley system proves to be more economical from 2030 onwards, due to the progressive decrease in green hydrogen production costs and the efficient use of renewable energy.
The global climate crisis has generated growing concern and urgency to reduce greenhouse gas (GHG) emissions and mitigate the environmental impact of various industries, including mining. In this context, this thesis focuses on analyzing the potential use of green hydrogen as an energy source for CAEX trucks in the Chilean mining industry, specifically in open-pit mine operations, with the aim of evaluating its operational and environmental viability. Copper mining, one of Chile's main economic activities, has a significant impact on fossil fuel consumption. In open-pit mine operations, CAEX trucks are responsible for a large part of diesel consumption, with each truck consuming approximately 1,500,000 liters of diesel per year, generating around 3,800 tons of CO2 annually per truck. The implementation of dual-fuel engines, operating with a mixture of 60% hydrogen and 40% diesel, appears as a viable option to reduce these emissions. Additionally, the trolley system, currently in use, also contributes to the reduction of diesel consumption. For the energy projection, data were obtained from reliable sources such as the Ministry of Energy and international organizations. Two scenarios were compared: the reference scenario based on the exclusive use of diesel and the alternative scenario that combines the use of green hydrogen with the trolley system. The participation rate of green hydrogen was projected over the years, considering a progressive reduction in diesel consumption due to the implementation of the trolley system. Emission projections were made for each study year, which are 2025, 2030, 2040, and 2050, thus quantifying the emission savings when comparing both scenarios. The results of the study show a significant reduction in GHG emissions in the alternative scenario. For the year 2025, the emission savings are minimal due to the low initial incorporation of green hydrogen. However, as time progresses, the emission reduction becomes more notable, reaching carbon neutrality by 2048 with the combined use of the trolley system and green hydrogen. By the end of the study period, an accumulated saving of 38,500 kilotons of CO2 equivalent is projected, highlighting the effectiveness of this strategy in reducing the carbon footprint in the mining industry. Furthermore, a detailed study of operational costs is carried out, analyzing the cost projections for the production of renewable energy and green hydrogen obtained from the National Green Hydrogen Strategy. The diesel cost projection was based on the 2021 Annual Energy Outlook report by the Energy Information Administration (EIA). These projections were considered for the years 2025, 2030, 2040, and 2050, evaluating how these costs affect the operational viability of the different scenarios. Finally, an analysis of operational cost savings using the trolley system combined with green hydrogen is performed. The results indicate that, although the base scenario is more profitable in the short term, operational costs tend to increase significantly in the long term. In contrast, the alternative scenario with green hydrogen and the trolley system proves to be more economical from 2030 onwards, due to the progressive decrease in green hydrogen production costs and the efficient use of renewable energy.
Description
Keywords
Hidrógeno verde, Energías renovables, Industria Minera, Transporte minero, Eficiencia energética, Impacto ambiental, Emisiones de gases de efecto invernadero
