Thesis Evaluación del uso del modelo solvation-layer interface condition (SLIC) para emular la respuesta no lineal de la ecuación de Poisson-Boltzmann
Loading...
Date
2025-07
Authors
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Mecánica
Departament
Campus
Campus Casa Central Valparaíso
Abstract
El llamado método de elementos de frontera (boundary element methods, BEM), es una técnica de resolución numérica, la cuál puede implementarse para resolver la ecuación de Poisson-Boltzmann (está se linealiza) en el contexto de la electrostática biomolecular. En este trabajo, se ha seguido esa línea de investigación, en específico, se ha evaluado una extensión llamada SLIC (solvation layer interface condition). El fin original de está extensión es la simulación de hidratación asimétrica presente en las moléculas del agua producto de la diferencia de tamaño entre los átomos de oxígenos e hidrógenos. Además de existir un fenómeno de cargas enterradas, dentro del soluto, que hace que exista un campo potencial estático distinto de cero, esto crea una diferencia en los resultados obtenidos, que depende del signo de la carga de cada átomo. Este modelo posteriormente considero el apantallamiento eléctrico (ionic screening). Se formula la hipótesis de que esté modelo también pueda emular correctamente los casos en que la ecuación de Poisson-Boltzmann linealizada cae ante los efectos no lineales, producto de su propia naturaleza. Por lo que en el presente trabajo se evaluaron casos en que se cumple está condición. estos fueron el ensayo de la molécula llamada Ubiquitina, la cuál mostró resultados de mejora poco convincentes, mejorando levemente el resultado. Mientras que la otra molécula ensayada, es la llamada 1AJF, se pudo lograr un mejor resultado (desde lo que se le evaluó a está molécula). Además, gracias al estudio de estas dos biomoléculas, se ha podido encontrar el origen del comportamiento que explica los resultados en ambos casos, por lo que de esa idea, se propone un posible trabajo futuro.
The so-called boundary element method (BEM) is a numerical technique that can be implemented to solve the Poisson–Boltzmann equation (which is linearized) in the context of biomolecular electrostatics. In this work, that line of research has been followed; specifically, an extension known as SLIC (solvation-layer interface condition) has been evaluated. The original purpose of this extension was the simulation of asymmetric hydration, which arises due to the size difference between the oxygen and hydrogen ions in water molecules. Additionally, a buried charge phenomenon exists within the solute, creating a nonzero static potential field. This leads to differences in the computed results that depend on the sign of each ion’s charge. This model later incorporated ionic screening, which is equivalent to solving the linearized Poisson–Boltzmann equation with a Stern layer. It is hypothesized that this model may also correctly emulate cases where the linearized Poisson–Boltzmann equation fails due to nonlinear effects arising from its own nature. Therefore, in the present work, cases where this condition applies were evaluated. One such case was the test of the molecule Ubiquitin, which showed only mildly improved results, with limited convincing enhancement. In contrast, the other molecule tested, known as 1AJF, yielded better results (based on the criteria applied to this molecule). Furthermore, through the study of these two biomolecules, the origin of the behavior explaining the outcomes in both cases was identified. Based on that insight, a possible future research direction is proposed.
The so-called boundary element method (BEM) is a numerical technique that can be implemented to solve the Poisson–Boltzmann equation (which is linearized) in the context of biomolecular electrostatics. In this work, that line of research has been followed; specifically, an extension known as SLIC (solvation-layer interface condition) has been evaluated. The original purpose of this extension was the simulation of asymmetric hydration, which arises due to the size difference between the oxygen and hydrogen ions in water molecules. Additionally, a buried charge phenomenon exists within the solute, creating a nonzero static potential field. This leads to differences in the computed results that depend on the sign of each ion’s charge. This model later incorporated ionic screening, which is equivalent to solving the linearized Poisson–Boltzmann equation with a Stern layer. It is hypothesized that this model may also correctly emulate cases where the linearized Poisson–Boltzmann equation fails due to nonlinear effects arising from its own nature. Therefore, in the present work, cases where this condition applies were evaluated. One such case was the test of the molecule Ubiquitin, which showed only mildly improved results, with limited convincing enhancement. In contrast, the other molecule tested, known as 1AJF, yielded better results (based on the criteria applied to this molecule). Furthermore, through the study of these two biomolecules, the origin of the behavior explaining the outcomes in both cases was identified. Based on that insight, a possible future research direction is proposed.
Description
Keywords
Método de elementos de frontera (BEM), Ecuación de Poisson-Boltzmann (linealizada), Modelo SLIC (solvation layer interface condition), Capa de Stern, Ubiquitina (molécula ensayada), 1AJF (molécula ensayada), Propuesta de trabajo futuro