Thesis Propuesta de sistema de monitoreo para la mejora del mantenimiento predictivo en reductores de velocidad para bombas de relave
Loading...
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Mecánica
Departament
Campus
Campus Santiago San Joaquín
Abstract
En el contexto de la minería moderna, garantizar la confiabilidad y la eficiencia operativa es crucial para mantener la sostenibilidad y rentabilidad. Minera Los Pelambres enfrenta desafíos significativos relacionados con fallas inesperadas en equipos críticos, como los reductores de velocidad FALK 525 A1, que forman parte del sistema de transporte de relaves. Estas fallas generan altos costos de reparación, tiempos de inactividad prolongados y riesgos operativos.
El objetivo principal de este trabajo es proponer un sistema de monitoreo automatizado y análisis predictivo para mejorar la gestión del mantenimiento de estos reductores. Para ello, se evalúa el estado actual de los equipos, se analiza sus modos de falla recurrentes utilizando herramientas como AMFEC y análisis de vida útil, y se seleccionan dispositivos avanzados de monitoreo y algoritmos predictivos adecuados.
El proyecto incluye varias etapas: desde el análisis del estado del arte y la evaluación del entorno operativo, hasta la selección e integración de dispositivos como sensores de vibración, temperatura y calidad del aceite. Asimismo, se priorizan algoritmos de aprendizaje automático, como redes neuronales y bosques aleatorios, para la predicción de fallas y optimización del mantenimiento. Además, se diseña un modelo de procesos que incluye roles, responsabilidades e infraestructura necesaria, acompañado de una evaluación técnico-económica integral.
Los resultados indican que la implementación del sistema puede reducir significativamente el tiempo de inactividad y los costos asociados al mantenimiento. También mejora la vida útil de los equipos y optimiza los recursos, contribuyendo a una operación más segura y sostenible. Este enfoque permite a Minera Los Pelambres avanzar hacia una gestión de activos más eficiente mediante la integración de tecnologías avanzadas, alineándose con los principios de la Industria 4.0 y abordando desafíos operativos relacionados con la confiabilidad y sostenibilidad de sus procesos.
In the context of modern mining, ensuring reliability and operational efficiency is crucial to maintaining sustainability and profitability. Minera Los Pelambres faces significant challenges related to unexpected failures in critical equipment, such as the FALK 525 A1 speed reducers, which are part of the tailings transport system. These failures result in high repair costs, prolonged downtime, and operational risks. The main objective of this work was to propose an automated monitoring and predictive analysis system to enhance the maintenance management of these reducers. To achieve this, the current state of the equipment was evaluated, their recurrent failure modes were analyzed using tools such as FMECA and life data analysis, and advanced monitoring devices and suitable predictive algorithms were selected. The project involved several stages, including a review of the state-of-the-art and an assessment of the operational environment, the selection and integration of devices such as vibration, temperature, and oil quality sensors, and the prioritization of machine learning algorithms, such as neural networks and random forests, for fault prediction and maintenance optimization. Additionally, a process model was designed, detailing roles, responsibilities, and the necessary infrastructure, complemented by a comprehensive technical-economic evaluation. The results indicate that implementing the system can significantly reduce downtime and maintenance costs. It also improves equipment lifespan and optimizes resources, contributing to safer and more sustainable operations. This approach enables Minera Los Pelambres to progress toward more efficient asset management by integrating advanced technologies, aligning with Industry 4.0 principles, and addressing operational challenges related to reliability and process sustainability.
In the context of modern mining, ensuring reliability and operational efficiency is crucial to maintaining sustainability and profitability. Minera Los Pelambres faces significant challenges related to unexpected failures in critical equipment, such as the FALK 525 A1 speed reducers, which are part of the tailings transport system. These failures result in high repair costs, prolonged downtime, and operational risks. The main objective of this work was to propose an automated monitoring and predictive analysis system to enhance the maintenance management of these reducers. To achieve this, the current state of the equipment was evaluated, their recurrent failure modes were analyzed using tools such as FMECA and life data analysis, and advanced monitoring devices and suitable predictive algorithms were selected. The project involved several stages, including a review of the state-of-the-art and an assessment of the operational environment, the selection and integration of devices such as vibration, temperature, and oil quality sensors, and the prioritization of machine learning algorithms, such as neural networks and random forests, for fault prediction and maintenance optimization. Additionally, a process model was designed, detailing roles, responsibilities, and the necessary infrastructure, complemented by a comprehensive technical-economic evaluation. The results indicate that implementing the system can significantly reduce downtime and maintenance costs. It also improves equipment lifespan and optimizes resources, contributing to safer and more sustainable operations. This approach enables Minera Los Pelambres to progress toward more efficient asset management by integrating advanced technologies, aligning with Industry 4.0 principles, and addressing operational challenges related to reliability and process sustainability.
Description
Keywords
Mantenimiento predictivo, Minería, Confiabilidad