Thesis Proceso de criogenia de hidrógeno y su relación con la industria aeronáutica
Loading...
Date
2024-03
Authors
Journal Title
Journal ISSN
Volume Title
Program
DEPARTAMENTO DE INGENIERÍA MECÁNICA. INGENIERÍA CIVIL MECÁNICA
Campus
Campus Casa Central Valparaíso
Abstract
La criogenia, el sector aeronáutico y el hidrógeno están entrelazados en el contexto de la exploración de soluciones más sostenibles y eficientes para la propulsión de aeronaves, especialmente en la búsqueda de alternativas a los combustibles fósiles impulsada a su vez por el cambio climático y la descarbonización hacia el año 2050 del sector aeronáutico, el uso del hidrogeno criogénico se presenta como una opción viable para reemplazar los actuales combustibles fósiles. Una de las formas de obtenerlo es por medio del ciclo Linde, el cual utiliza compresores, intercambiadores de calor y válvulas de estrangulación para lograr la temperatura deseada de aproximadamente -250°. El hidrógeno líquido o abreviado a LH2 presenta 2 posibles opciones para ser empleado en la aeronáutica: la primera con pilas de combustible y la segunda siendo quemado directamente en la turbina. Este vínculo entre la criogenia y la aviación abre la puerta a nuevas posibilidades para avanzar hacia un sector aeronáutico más limpio y eficiente. Para determinar su potencial y su factibilidad se analizan sus ventajas y desventajas y se realiza un breve análisis económico y de impacto ambiental los cuales entregan los puntos fundamentales para dilucidar esto.
Previo al análisis se limitó el alcance del informe a aviones de medio alcance los cuales cubren entre un 40% a 50% del total de la industria que a su vez representan un 50% de las emisiones globales de la aeronáutica, esto debido a que para aviones de largo alcance los estudios demuestran factibilidad, pero presentan dificultades tanto técnicas como económicas, debido al elevado peso y tamaño de los tanques de LH2 que podrían afectar a la aerodinámica, autonomía. Económicamente hablando su precio aumentaría hasta en un 10% más que los aviones actuales y presentan una mayor demanda energética solo solucionable con un gran desarrollo tecnológico.
Necesario es describir las tecnologías actuales dentro de la aeronáutica, en las cuales podemos encontrar los turbohélices que no presentan mucho uso en la industria, luego los turborreactores que han sido desplazados por los motores turbofán los cuales son los más usados actualmente en la industria, en especial en los vuelos de largo alcance. Dentro del sector aeroespacial sus usos de LH2 recaen en la propulsión de los motores cohete criogénicos, en vuelos habitados para generar electricidad, como refrigeración, y para realizar pequeñas propulsiones en órbita. Estos usos ya tienen tiempo en práctica, por lo cual esta información es de utilidad para el sector aeronáutico en el óptimo desarrollo de la propulsión con LH2 en esta industria.
Como toda tecnología presentan ventajas y desventajas y el LH2 no queda exento, entre las ventajas se presenta como la principal su poder calorífico, que es aproximadamente 3 veces mayor que la de los otros combustibles fósiles. Posee una alta densidad energética, sumándose las cero emisiones de residuos tóxicos al ambiente y no ser corrosivo. Requiere menor presión para su almacenamiento en su forma líquida y se suma a que es una fuente abundante casi inagotable; esto último nos da inicio a una de sus primeras problemáticas ya que se requiere de agua para su obtención mediante la electrólisis, por lo cual es necesaria su regulación debido a la escasez hídrica. Se requiere de un mayor desarrollo de los tanques criogénicos tanto para evitar fugas y perdidas de LH2 cuando no esté en uso como para evitar pérdidas de T°, en caso de fugas el hidrogeno es nocivo para el ser humano y posee riesgos de explosividad.
El primer punto a desarrollar será el económico, en este se presentan algunos valores importantes como el precio que costaría llenar el estanque de un avión de medio alcance de 26.000 [litros], que con los precios actuales de cada combustible el hidrogeno costaría más de 3 veces que el tradicional, con un valor de 48.000.000 [CLP] y con una proyección del precio al 2050 este se disminuye a 2 veces por sobre el combustible tradicional con un valor de 27.500.000 [CLP] sin considerar la variación del combustible fósil. Sobre el precio del avión mismo, para aviones de medio alcance este podría reducirse entre un 1% a un 10% de su costo actual, pero el costo operativo si presenta un aumento de entre un 30% y un 40% sobre los gastos actuales. Otro costo que aumentaría seria el del boleto del cliente el cual se maneja con certeza su aumento pero aún no se cuantifica. La inversión total llega a la cifra de 129 mil millones de dólares para un valor actual del dólar esto tomado en un escenario europeo en base al informe de Steer Group- Transport & Environment.
Para el análisis ambiental la reducción de emisiones de un avión utilizando pilas de combustible es de un 75-90% y para una combustión directa es de un 50-75% este porcentaje a números se traduce en que las emisiones totales del sector aeronáutico representan un 2-3% global lo que son aproximadamente 9 [GTon de CO2]. Con este combustible se podrían ahorrar aproximadamente 7 [GTon de CO2]. Para realizar una tecnología que reduzca eficientemente las emisiones la generación del H2 también debe de ser de origen “verde” y si actualmente todo el H2 se generara a partir de energías limpias se ahorrarían 830 millones de Ton de CO2 como lo expone la empresa Iberdrola que lleva 170 años en energías renovables.
A nivel técnico se calculan dos datos importantes, son las relaciones peso/potencia y el empuje/peso las cuales indican a nivel técnico la factibilidad de emplear el LH2 como combustible. Los resultados indican que las pilas de combustibles con una relación peso/potencia de 0,0475 [kg/hp] mueven menos kg por hp de potencia en comparación a las turbinas de LH2 (0,0553 [kg/hp] ) y tradicionales (0,0648 [kg/hp] ) lo que se puede traducir en una mejor aceleración y una mejor autonomía, en el ámbito del empuje/peso las pilas de combustible son las que presentan el menor valor, sin embargo las turbinas de LH2 compiten con las tradicionales con la fuerza que generan por la combustión que propician el movimiento del avión y su aceleración.
Estos datos destacan un potencial ambiental y económico sustancial, y desde una perspectiva técnica, el proyecto se presenta como viable. Sus ventajas lo posicionan como una opción primaria para la descarbonización del sector aeronáutico, sin embargo requiere de una gran inversión tanto en el desarrollo de las aeronaves para lograr las autonomías requeridas, reducciones de peso dentro de la aeronave y de los tanques de LH2 para mantener las velocidades y que la implementación de los tanques no genere cambios en la aerodinámica. La infraestructura de aeropuertos y empresas que se dediquen a la producción de LH2 es un punto clave de inversión también como en la mejora de la eficiencia de la tecnología propuesta debido a que un 40% de la energía del hidrogeno se pierde en su licuefacción y para evitar ese 3% de perdida de LH2, la mantención del vacío de los tanques criogénicos es fundamental además para evitar fugas, generando mayor seguridad. Se requiere mejorar la transferencia de LH2 desde los tanques hacia las turbinas como también mejorar el proceso donde el hidrogeno pasa de estado líquido a gaseoso para su uso directo en turbinas o generar turbinas que funcionen con LH2. Por ultimo y no menos importante la regulación y la normativa necesaria para que el desarrollo de esta sea totalmente verde, y no provoque desbalances en otros sectores, como podría ser el suelo o el recurso hídrico.
Cryogenics, the aeronautical sector and hydrogen are intertwined in the context of exploring more sustainable and efficient solutions for aircraft propulsion, especially in the search for alternatives to fossil fuels driven in turn by climate change and the decarbonization of the aeronautical sector towards the year 2050, the use of cryogenic hydrogen is presented as a viable option to replace current fossil fuels. One of the ways to obtain it is through the Linde cycle, which uses compressors, heat exchangers and throttling valves to achieve the desired temperature of approximately -250°. Liquid hydrogen or abbreviated to LH2 presents 2 possible options for use in aeronautics: the first with fuel cells and the second by being burned directly in the turbine. This link between cryogenics and aviation opens the door to new possibilities for moving towards a cleaner and more efficient aeronautical sector. In order to determine its potential and feasibility, its advantages and disadvantages are analyzed and a brief economic and environmental impact analysis is made, which provide the fundamental points to elucidate this. Prior to the analysis, the scope of the report was limited to medium-range aircraft, which cover between 40% to 50% of the total industry, which in turn represents 50% of global aeronautical emissions. This is due to the fact that for long-range aircraft, studies show feasibility, but present both technical and economic difficulties, due to the high weight and size of LH2 tanks, which could affect aerodynamics and autonomy. Economically speaking, their price would increase up to 10% more than current aircrafts and they present a higher energy demand that can only be solved with a great technological development. It is necessary to describe the current technologies within aeronautics, in which we can find the turboprops that do not have much use in the industry, then the turbojets that have been displaced by the turbofan engines which are currently the most used in the industry, especially in long-range flights. Within the aerospace sector, the uses of LH2 are in the propulsion of cryogenic rocket engines, in human spaceflight to generate electricity, for cooling, and for small propulsion in orbit. These uses have already been in practice for some time, so this information is useful for the aeronautical sector in the optimal development of LH2 propulsion in this industry. As every technology has advantages and disadvantages and LH2 is not exempt, among the advantages, the main one is its calorific value, which is approximately 3 times higher than that of other fossil fuels. It has a high energy density, in addition to zero emissions of toxic waste to the environment and is non-corrosive. It requires less pressure for its storage in its liquid form and it is an abundant and almost inexhaustible source; the latter gives us the beginning of one of its first problems, since it requires water to obtain it through electrolysis, which is why its regulation is necessary due to water scarcity. Further development of cryogenic tanks is required both to avoid leaks and losses of LH2 when not in use and to avoid losses of T°, in case of leaks hydrogen is harmful to humans and has explosive risks. The first point to develop will be the economic one, in which some important values are presented, such as the price of filling the tank of a medium range airplane of 26,000 [liters], that with the current prices of each fuel, hydrogen would cost more than 3 times the traditional one, with a value of 48,000,000 [CLP] and with a price projection to 2050 this is reduced to 2 times over the traditional fuel with a value of 27,500,000 [CLP] without considering the variation of the fossil fuel. Regarding the price of the aircraft itself, for medium range aircraft this could be reduced by 1% to 10% of its current cost, but the operating cost would increase by 30% to 40% over current costs. Another cost that would increase would be the customer's ticket, which is expected to increase but has not yet been quantified. The total investment amounts to 129 billion dollars for a current value of the dollar, based on a European scenario according to the Steer Group-Transport & Environment report. For the environmental analysis the reduction of emissions of an aircraft using fuel cells is 75-90% and for a direct combustion is 50-75% this percentage to numbers translates into the total emissions of the aviation sector represent 2-3% overall which is approximately 9 [GTon of CO2]. With this fuel approximately 7 [GTon of CO2] could be saved. To realize a technology that efficiently reduces emissions, H2 generation must also be of "green" origin and if all H2 were currently generated from clean energies, 830 million tons of CO2 would be saved, as stated by the company Iberdrola, which has been involved in renewable energies for 170 years. At the technical level, two important data are calculated, the power-to-weight and thrust-to-weight ratios, which indicate at the technical level the feasibility of using LH2 as fuel. The results indicate that fuel cells with a thrust/power ratio of 0.0475 [kg/hp] move less kg per hp of power compared to LH2 (0.0553 [kg/hp] ) and traditional (0.0648 [kg/hp] ) turbines, which can be translated into better acceleration and range, In terms of thrust/weight, fuel cells have the lowest value; however, LH2 turbines compete with traditional turbines with the force generated by the combustion that propitiates the movement of the aircraft and its acceleration. These data highlight a substantial environmental and economic potential, and from a technical perspective, the project is presented as viable. Its advantages position it as a primary option for the decarbonization of the aeronautical sector, however, it requires a large investment in the development of aircraft to achieve the required autonomy, weight reductions within the aircraft and LH2 tanks to maintain speeds and that the implementation of the tanks does not generate changes in aerodynamics. The infrastructure of airports and companies dedicated to the production of LH2 is a key point of investment as well as in the improvement of the efficiency of the proposed technology because 40% of the hydrogen energy is lost in its liquefaction and to avoid that 3% of LH2 loss, the maintenance of the vacuum of the cryogenic tanks is also fundamental to avoid leaks, generating greater security. It is necessary to improve the transfer of LH2 from the tanks to the turbines as well as to improve the process where hydrogen passes from liquid to gaseous state for its direct use in turbines or to generate turbines that work with LH2. Last but not least, the regulation and norms necessary to ensure that the development of this is totally green, and does not cause imbalances in other sectors, such as soil or water resources.
Cryogenics, the aeronautical sector and hydrogen are intertwined in the context of exploring more sustainable and efficient solutions for aircraft propulsion, especially in the search for alternatives to fossil fuels driven in turn by climate change and the decarbonization of the aeronautical sector towards the year 2050, the use of cryogenic hydrogen is presented as a viable option to replace current fossil fuels. One of the ways to obtain it is through the Linde cycle, which uses compressors, heat exchangers and throttling valves to achieve the desired temperature of approximately -250°. Liquid hydrogen or abbreviated to LH2 presents 2 possible options for use in aeronautics: the first with fuel cells and the second by being burned directly in the turbine. This link between cryogenics and aviation opens the door to new possibilities for moving towards a cleaner and more efficient aeronautical sector. In order to determine its potential and feasibility, its advantages and disadvantages are analyzed and a brief economic and environmental impact analysis is made, which provide the fundamental points to elucidate this. Prior to the analysis, the scope of the report was limited to medium-range aircraft, which cover between 40% to 50% of the total industry, which in turn represents 50% of global aeronautical emissions. This is due to the fact that for long-range aircraft, studies show feasibility, but present both technical and economic difficulties, due to the high weight and size of LH2 tanks, which could affect aerodynamics and autonomy. Economically speaking, their price would increase up to 10% more than current aircrafts and they present a higher energy demand that can only be solved with a great technological development. It is necessary to describe the current technologies within aeronautics, in which we can find the turboprops that do not have much use in the industry, then the turbojets that have been displaced by the turbofan engines which are currently the most used in the industry, especially in long-range flights. Within the aerospace sector, the uses of LH2 are in the propulsion of cryogenic rocket engines, in human spaceflight to generate electricity, for cooling, and for small propulsion in orbit. These uses have already been in practice for some time, so this information is useful for the aeronautical sector in the optimal development of LH2 propulsion in this industry. As every technology has advantages and disadvantages and LH2 is not exempt, among the advantages, the main one is its calorific value, which is approximately 3 times higher than that of other fossil fuels. It has a high energy density, in addition to zero emissions of toxic waste to the environment and is non-corrosive. It requires less pressure for its storage in its liquid form and it is an abundant and almost inexhaustible source; the latter gives us the beginning of one of its first problems, since it requires water to obtain it through electrolysis, which is why its regulation is necessary due to water scarcity. Further development of cryogenic tanks is required both to avoid leaks and losses of LH2 when not in use and to avoid losses of T°, in case of leaks hydrogen is harmful to humans and has explosive risks. The first point to develop will be the economic one, in which some important values are presented, such as the price of filling the tank of a medium range airplane of 26,000 [liters], that with the current prices of each fuel, hydrogen would cost more than 3 times the traditional one, with a value of 48,000,000 [CLP] and with a price projection to 2050 this is reduced to 2 times over the traditional fuel with a value of 27,500,000 [CLP] without considering the variation of the fossil fuel. Regarding the price of the aircraft itself, for medium range aircraft this could be reduced by 1% to 10% of its current cost, but the operating cost would increase by 30% to 40% over current costs. Another cost that would increase would be the customer's ticket, which is expected to increase but has not yet been quantified. The total investment amounts to 129 billion dollars for a current value of the dollar, based on a European scenario according to the Steer Group-Transport & Environment report. For the environmental analysis the reduction of emissions of an aircraft using fuel cells is 75-90% and for a direct combustion is 50-75% this percentage to numbers translates into the total emissions of the aviation sector represent 2-3% overall which is approximately 9 [GTon of CO2]. With this fuel approximately 7 [GTon of CO2] could be saved. To realize a technology that efficiently reduces emissions, H2 generation must also be of "green" origin and if all H2 were currently generated from clean energies, 830 million tons of CO2 would be saved, as stated by the company Iberdrola, which has been involved in renewable energies for 170 years. At the technical level, two important data are calculated, the power-to-weight and thrust-to-weight ratios, which indicate at the technical level the feasibility of using LH2 as fuel. The results indicate that fuel cells with a thrust/power ratio of 0.0475 [kg/hp] move less kg per hp of power compared to LH2 (0.0553 [kg/hp] ) and traditional (0.0648 [kg/hp] ) turbines, which can be translated into better acceleration and range, In terms of thrust/weight, fuel cells have the lowest value; however, LH2 turbines compete with traditional turbines with the force generated by the combustion that propitiates the movement of the aircraft and its acceleration. These data highlight a substantial environmental and economic potential, and from a technical perspective, the project is presented as viable. Its advantages position it as a primary option for the decarbonization of the aeronautical sector, however, it requires a large investment in the development of aircraft to achieve the required autonomy, weight reductions within the aircraft and LH2 tanks to maintain speeds and that the implementation of the tanks does not generate changes in aerodynamics. The infrastructure of airports and companies dedicated to the production of LH2 is a key point of investment as well as in the improvement of the efficiency of the proposed technology because 40% of the hydrogen energy is lost in its liquefaction and to avoid that 3% of LH2 loss, the maintenance of the vacuum of the cryogenic tanks is also fundamental to avoid leaks, generating greater security. It is necessary to improve the transfer of LH2 from the tanks to the turbines as well as to improve the process where hydrogen passes from liquid to gaseous state for its direct use in turbines or to generate turbines that work with LH2. Last but not least, the regulation and norms necessary to ensure that the development of this is totally green, and does not cause imbalances in other sectors, such as soil or water resources.
Description
Keywords
Criogenia, Hidrógeno