Thesis Modelación y análisis térmico de un receptor cerámico con dioxido de carbono como fluido portador
Loading...
Date
2021
Authors
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Mecánica
Departament
Campus
Campus Santiago San Joaquín
Abstract
En los últimos años ha aumentado el interés por el uso de ciclos de dióxido de carbono supercrítico en las centrales de concentración solar por su mayor eficiencia, esto requiere el desarrollo de nuevas tecnologías y materiales en torno a los receptores que puedan soportar dichas condiciones operacionales.
En el siguiente trabajo de título se desarrolla un modelo computacional para la simulación de un receptor solar de material cerámico en estado estacionario que acopla la interacción del ambiente, fluido de transferencia de calor con ecuaciones analíticas y correlaciones y la simulación del receptor con el método de elementos finitos. La geometría del receptor es generada con Inventor, mallada mediante GMSH y simulada en el software FEniCS Project.
El modelo fue validado con los datos obtenidos por Leray en los ensayos realizados en la central de Themis en Targasonne, Francia.
Los parámetros de entrada del modelo son el flujo másico, la densidad de flujo solar, la presión y temperatura de entrada. Esto permite analizar el desempeño del receptor con aire y dióxido de carbono como fluido de trabajo. El uso de receptores cerámicos tubulares con CO2 se vuelve atractivo ya que estos permiten soportar de mejor manera las presiones requeridas para un ciclo Brayton supercrítico.
In the last years there has been increasing interest in the use of supercritical carbon dioxide cycles in concentrating solar power plants due to its higher efficiency, this requires the development of new technologies and materials around the receivers that can withstand such operational conditions. In the following work, a computational model is developed in order to simulate a ceramic solar receiver which is in steady state that couples: the interaction with the environment and, the heat transfer fluid with analytical equations and correlations, also the simulation of the receiver with the limited elements method. The geometry of the receptor is generated with Inventor and meshed by GMSH and simulated in the FEniCS Project software. This model is attached through the simulation software, and it is validated with the data obtained by Leray in the tests carried out at the Themis central in Targasonne, France. The input parameters of the model are mass flow, solar flux density, pressure, and input temperature. This allows to analyze the performance of the receiver with air and carbon dioxide as fluid working. The use of tubular ceramic receivers with CO2 becomes attractive as they can better withstand the pressures required for a supercritical Brayton cycle.
In the last years there has been increasing interest in the use of supercritical carbon dioxide cycles in concentrating solar power plants due to its higher efficiency, this requires the development of new technologies and materials around the receivers that can withstand such operational conditions. In the following work, a computational model is developed in order to simulate a ceramic solar receiver which is in steady state that couples: the interaction with the environment and, the heat transfer fluid with analytical equations and correlations, also the simulation of the receiver with the limited elements method. The geometry of the receptor is generated with Inventor and meshed by GMSH and simulated in the FEniCS Project software. This model is attached through the simulation software, and it is validated with the data obtained by Leray in the tests carried out at the Themis central in Targasonne, France. The input parameters of the model are mass flow, solar flux density, pressure, and input temperature. This allows to analyze the performance of the receiver with air and carbon dioxide as fluid working. The use of tubular ceramic receivers with CO2 becomes attractive as they can better withstand the pressures required for a supercritical Brayton cycle.
Description
Keywords
Transferencia de masa, CO2, Programación estructurada
