Thesis Actualización de modelo de fragmentacion primaria en mineria de block caving
Loading...
Date
2023
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
La minería subterránea se presenta como una solución para la extracción de yacimientos que, debido a la profundidad en que se encuentran, la minería a cielo abierto convencional ya no resulta económicamente rentable y en este sentido es que los métodos de minería subterránea se han vuelto más viables y preferidos en el tiempo. Sin embargo, debido a las condiciones de la minería actual, hay cierto grado de incerteza sobre si se pueden llegar a lograr los bajos costos y la productividad características de la minería por hundimiento (Flores, 2014). Las principales dificultades para lograr estos objetivos son yacimientos a mayores profundidades que implica mayores esfuerzos in-situ, menores leyes y rocas más duras (Paredes 2022).
En este contexto, uno de los parámetros clave en la minería de Block/Panel Caving es la fragmentación primaria, la cual tiene un impacto significativo en el desempeño de todo el sistema minero. A pesar de ser un factor importante, su complejidad de ser cuantificada debido a las variables que la rigen y su ocurrencia al interior del macizo rocoso plantea desafíos adicionales. A pesar de su relevancia, actualmente existen pocos softwares o métodos que permiten estimar la fragmentación primaria y algunos de estos no están del todo validados, generando errores en la estimación de la fragmentación.
Es por esto último que en este trabajo se buscará modelar la curva de fragmentación del macizo rocoso basándose en su calidad de roca, específicamente en el RMR de Laubscher incluyendo el preacondicionamiento, a través de una modificación a la matriz de reducción y los ponderadores que influyen en el stress caving efectivo propuestos por Laubscher (2000).
Para mejorar la precisión en la predicción de la fragmentación primaria, se propuso una nueva matriz de reducción primaria, cambiando los ponderadores de la matriz de Laubscher y del stress caving efectivo a través de una minimización de errores de los porcentajes pasantes para los tamaños característicos d100, d80, d50 y d20 entre curvas de fragmentación primaria de distintas minas y su respectiva curva de fragmentación primaria propuesta por Laubscher para la clase de roca correspondiente. Por otro lado, para la incorporación del preacondicionamiento se modelaron
curvas de fragmentación dependiendo del espaciamiento utilizado para el fracturamiento hidráulico.
De esta manera, se obtuvo una nueva matriz de fragmentación primaria y se modificó el stress caving de Laubscher, permitiendo predecir con mayor precisión la fragmentación primaria del macizo rocoso según su RMR, con diferencias menores a 20 cm en la fragmentación gruesa y menores a 10 cm en la fragmentación más fina para los casos de estudio, y curvas de fragmentación empíricas basadas en datos reales de tamaños de roca preacondicionada.
Finalmente, este trabajo presenta una actualización a la metodología de predicción de fragmentación primaria propuesta por Laubscher (2000) considerando ambientes mineros de caving actuales, además se presentan curvas de fragmentación primaria que sirven como guía para predecir
el tamaño de la roca preacondicionada. Sin embargo, el modelo de predicción no es perfecto y puede seguir mejorando a través de futuras actualizaciones.
Underground mining is as the preferred solution for the extraction of deposits that, due to the depth at which conventional open pit mining is located, are no longer profitable. In this sense, underground mining methods have become more viable and preferred when the objectives are low cost and high productivity, which allows large, low-grade deposits to be extracted. However, due to current mining conditions, there is a certain degree of uncertainty about whether the expected low costs and productivity can be achieved (Flores, 2014). The main difficulties in achieving these objectives are deposits at greater depths that imply greater in-situ efforts, lower grades, and harder rocks (Paredes, 2022). One of the key parameters in Block/Panel Caving mining is primary fragmentation which greatly affects the performance of the entire mining system. However, it is complex to quantify due to the variables that govern it and cannot be observed (since it happens inside the rock mass) which makes it difficult to predict. Despite its relevance, there are few software or methods that allow estimating primary fragmentation and most of these are not fully validated, which produces errors in the estimations. For this reason, in this work we will model the fragmentation curve of the rock mass based on its rock quality, specifically on the Laubscher RMR and wether preconditioning was applied, through a modification to the reduction matrix and the weights that influence the effective stress caving proposed by Laubscher (2000). To improve the accuracy in the prediction of primary fragmentation, a new primary reduction matrix is proposed, changing the weights of the Laubscher matrix and the effective caving stress through a minimization of errors of the characteristic sizes d100, d80, d50 y d20 between the primary fragmentation curve proposed by Laubscher for the corresponding rock class. On the other hand, to incorporate preconditioning, fragmentation curves were modeled depending on the spacing used for hydraulic fracturing. As a result, a new primary fragmentation matrix was obtained and the Laubscher stress caving was modified, which allows a more accurate prediction of the primary fragmentation of the rock mass according to its RMR, with differences of less than 20 cm in the coarse fragmentation and less than 10 cm in the finest fragmentation for the case studies, and empirical fragmentation curves based on real data of preconditioned rock size. Finally, this work presents an update to Laubscher (2000) predictive primary fragmentation methodology considering current caving mining environments. In addition, primary fragmentation curves are presented as a guide to predict the size of preconditioned rock. However, the prediction model is not perfect and can continue to improve through future updates.
Underground mining is as the preferred solution for the extraction of deposits that, due to the depth at which conventional open pit mining is located, are no longer profitable. In this sense, underground mining methods have become more viable and preferred when the objectives are low cost and high productivity, which allows large, low-grade deposits to be extracted. However, due to current mining conditions, there is a certain degree of uncertainty about whether the expected low costs and productivity can be achieved (Flores, 2014). The main difficulties in achieving these objectives are deposits at greater depths that imply greater in-situ efforts, lower grades, and harder rocks (Paredes, 2022). One of the key parameters in Block/Panel Caving mining is primary fragmentation which greatly affects the performance of the entire mining system. However, it is complex to quantify due to the variables that govern it and cannot be observed (since it happens inside the rock mass) which makes it difficult to predict. Despite its relevance, there are few software or methods that allow estimating primary fragmentation and most of these are not fully validated, which produces errors in the estimations. For this reason, in this work we will model the fragmentation curve of the rock mass based on its rock quality, specifically on the Laubscher RMR and wether preconditioning was applied, through a modification to the reduction matrix and the weights that influence the effective stress caving proposed by Laubscher (2000). To improve the accuracy in the prediction of primary fragmentation, a new primary reduction matrix is proposed, changing the weights of the Laubscher matrix and the effective caving stress through a minimization of errors of the characteristic sizes d100, d80, d50 y d20 between the primary fragmentation curve proposed by Laubscher for the corresponding rock class. On the other hand, to incorporate preconditioning, fragmentation curves were modeled depending on the spacing used for hydraulic fracturing. As a result, a new primary fragmentation matrix was obtained and the Laubscher stress caving was modified, which allows a more accurate prediction of the primary fragmentation of the rock mass according to its RMR, with differences of less than 20 cm in the coarse fragmentation and less than 10 cm in the finest fragmentation for the case studies, and empirical fragmentation curves based on real data of preconditioned rock size. Finally, this work presents an update to Laubscher (2000) predictive primary fragmentation methodology considering current caving mining environments. In addition, primary fragmentation curves are presented as a guide to predict the size of preconditioned rock. However, the prediction model is not perfect and can continue to improve through future updates.
Description
Keywords
Minería subterránea, Mecánica de rocas, Block caving
Citation
Campus
Campus Santiago San Joaquín