Thesis Álgebra de matrices utilizando estructuras compactas tipo k2-trees
Loading...
Date
2024-12
Authors
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Informática
Departament
Campus
Campus Santiago San Joaquín
Abstract
El álgebra de matrices dispersas es un problema muy común en varias áreas de la matemática como lo puede ser la computación científica y la inteligencia artificial. Este trabajo propone utilizar la estructura de datos k2−tree, el cual representa el árbol en arreglos de bits, como nueva forma de representar matrices dispersas y en conjunto de nuevas operaciones, se propone como primer acercamiento, sumar dos matrices utilizando este nuevo enfoque, dando tiempos de ejecución razonables y dando una conclusión favorable para matrices dispersas.
Sparse matrix algebra is a very common problem in several areas of mathematics such as scientific computing and artificial intelligence. This work proposes to use the data structure k2−tree, which represents the tree in arrays of bits, as a new way of representing sparse matrices and in a set of new operations, it is proposed as a first approach, to add two matrices using this new approach, giving reasonable execution times and giving a favorable conclusion for sparse matrices.
Sparse matrix algebra is a very common problem in several areas of mathematics such as scientific computing and artificial intelligence. This work proposes to use the data structure k2−tree, which represents the tree in arrays of bits, as a new way of representing sparse matrices and in a set of new operations, it is proposed as a first approach, to add two matrices using this new approach, giving reasonable execution times and giving a favorable conclusion for sparse matrices.
Description
Keywords
Álgebra de matrices, Matrices dispersas, Estructuras de datos, k2-tree
