Thesis Caracterización numérica de las propiedades mecánicas de un material basado en superficies mínimas triplemente periódicas (TPMS) con porosidad funcionalmente dirigida: aplicación en ingeniería de tejidos óseos
Loading...
Date
2024-08
Authors
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Mecánica
Departament
Campus
Campus Casa Central Valparaíso
Abstract
En la actualidad, se utilizan cada vez mayor cantidad de implantes óseos. Esto se debe al aumento de la longevidad de la población a nivel mundial y también como consecuencia de graves accidentes. Estos implantes, si bien solucionan un problema, pueden generar otros, como el stress-shielding o apantallamiento de esfuerzos, en donde, debido a la alta rigidez de las prótesis en comparación con el hueso natural, la zona ósea que rodea la prótesis se comienza a debilitar, ya que la prótesis absorbe la mayor parte de las cargas externas recibidas.
Las superficies mínimas triplemente periódicas (TPMS) en diversos estudios han mostrado la versatilidad que poseen como estructuras biomiméticas . Es por esto que en este trabajo se desarrollan computacionalmente scaffolds cilíndricos con porosidad en gradiente radial a partir de superficies TPMS tipo Gyroid solid y Diamond solid, como estructuras capaces de ser utilizadas en aplicaciones de sustitución ósea . Para esto, se desarrolló un método para obtener modelos con gradientes radiales de porosidad del tipo creciente y decreciente, para 80% a 40%, 70% a 40%, 60% a 40% y 50% a 40%. En relación al tamaño de poro medio, se obtuvieron rangos para los modelos tipo Gyroid solid entre 900 [μm] y 1150 [μm], y para los modelos tipo Diamond solid entre 1000 [μm] y 1270 [μm], similares a los rangos de tejido óseo . Finalmente, se lograron resultados de módulo de elasticidad normalizado (En) para los modelos en estudio bajo ensayo de compresión , donde se obtuvo un comportamiento elástico superior en los modelos tipo Gyroid solid en comparación con los modelos tipo Diamond solid, sin embargo, para ambos casos, al aumentar la porosidad volumétrica , el En disminuye y viceversa. Respecto a la orientación del gradiente radial de porosidad para ambas geometrías TPMS, no se encontraron diferencias en los resultados de En. Los rangos de En para los modelos tipo Gyroid solid resultaron en 0.262 [-] a 0.144 [-]; para los modelos tipo Diamond solid, resultaron en 0.236 [-] a 0.124 [-]. Se compararon los resultados de En con modelos de control con porosidad y tamaño de poro homogéneo , donde se determinó que los modelos tipo Gyroid solid exhiben un mejor comportamiento elástico al superar el 55% de porosidad volumétrica , y los modelos tipo Diamond solid al superar el 60% respecto a los modelos de control. Se contrastaron los resultados con curvas teóricas de En en función de la porosidad, encontrándose que los datos obtenidos en este trabajo coinciden con los modelos teóricos estudiados en el pasado sobre materiales porosos. Se analizó la influencia de los factores en estudio sobre el En, encontrándose que la orientación del gradiente radial no tiene mayor influencia en comparación con el tipo de TPMS y los niveles de porosidad. Debido a la alta interconexión de los poros en los modelos en estudio, junto con los rangos de tamaño de poro, porosidad y En, comparables al tejido óseo , se puede determinar que estos scaffolds poseen una gran viabilidad como posibles implantes óseos y una gran aplicabilidad en otras áreas de las ciencias.
Nowadays, more and more bone implants are being used, due to the increase in longevity of the population worldwide, and also as a consequence of serious accidents. Although these implants solve one problem, they can also cause others, such as stress-shielding, where, due to the high rigidity of the prosthesis compared to natural bone, the bone area surrounding the prosthesis begins to weaken, since the prosthesis absorbs most of the external loads received. Triple periodic minimal surfaces (TPMS) in several studies have already shown their versatility as biomimetic structures. Therefore, in this work, cylindrical scaffolds with radial gradient porosity are computationally developed from TPMS surfaces of the Gyroid solid and Diamond solid types, as structures capable of being used in bone replacement applications. For this purpose, a method was developed to obtain models, with increasing and decreasing radial porosity gradients for 80% to 40 %, 70% to 40 %, 60% to 40% and 50% to 40 %. In relation to the average pore size, ranges were obtained for Gyroid solid models between 900 [μm] and 1150 [μm], and for Diamond solid models between 1000 [μm] and 1270 [μm], similar to the ranges for bone tissue. Finally, results of normalised modulus of elasticity (En) were obtained for the models under study under compression test, where a higher elastic behaviour was obtained in the Gyroid solid models compared to the Diamond solid models, however, in both cases, as the volumetric porosity increases, the (En) decreases and vice versa. Regarding the orientation of the radial porosity gradient for both TPMS geometries, no differences were found in the En results. The ranges of En for Gyroid solid type models resulted in 0.262 [-] to 0.144 [-], for Diamond solid type models resulted in 0.236 [-] to 0.124 [-]. The results of En were compared with control models with homogeneous porosity and pore size, where it was determined that the Gyroid solid models exhibit better elastic behavior when exceeding 55% of volumetric porosity, and the Diamond solid models when exceeding 60% with respect to the control models. The results were contrasted with theoretical curves of En as a function of porosity, and it was found that the data obtained in this work agree with the theoretical models studied in the past on porous materials. The influence of the factors under study on the En was analyzed, finding that the radial gradient orientation has no major influence compared to the TPMS type and porosity levels. Due to the high interconnectedness of the pores in the models under study, together with pore size, porosity and En ranges comparable to bone tissue, it can be determined that these scaffolds have great viability as potential bone implants, and great applicability in other areas of science.
Nowadays, more and more bone implants are being used, due to the increase in longevity of the population worldwide, and also as a consequence of serious accidents. Although these implants solve one problem, they can also cause others, such as stress-shielding, where, due to the high rigidity of the prosthesis compared to natural bone, the bone area surrounding the prosthesis begins to weaken, since the prosthesis absorbs most of the external loads received. Triple periodic minimal surfaces (TPMS) in several studies have already shown their versatility as biomimetic structures. Therefore, in this work, cylindrical scaffolds with radial gradient porosity are computationally developed from TPMS surfaces of the Gyroid solid and Diamond solid types, as structures capable of being used in bone replacement applications. For this purpose, a method was developed to obtain models, with increasing and decreasing radial porosity gradients for 80% to 40 %, 70% to 40 %, 60% to 40% and 50% to 40 %. In relation to the average pore size, ranges were obtained for Gyroid solid models between 900 [μm] and 1150 [μm], and for Diamond solid models between 1000 [μm] and 1270 [μm], similar to the ranges for bone tissue. Finally, results of normalised modulus of elasticity (En) were obtained for the models under study under compression test, where a higher elastic behaviour was obtained in the Gyroid solid models compared to the Diamond solid models, however, in both cases, as the volumetric porosity increases, the (En) decreases and vice versa. Regarding the orientation of the radial porosity gradient for both TPMS geometries, no differences were found in the En results. The ranges of En for Gyroid solid type models resulted in 0.262 [-] to 0.144 [-], for Diamond solid type models resulted in 0.236 [-] to 0.124 [-]. The results of En were compared with control models with homogeneous porosity and pore size, where it was determined that the Gyroid solid models exhibit better elastic behavior when exceeding 55% of volumetric porosity, and the Diamond solid models when exceeding 60% with respect to the control models. The results were contrasted with theoretical curves of En as a function of porosity, and it was found that the data obtained in this work agree with the theoretical models studied in the past on porous materials. The influence of the factors under study on the En was analyzed, finding that the radial gradient orientation has no major influence compared to the TPMS type and porosity levels. Due to the high interconnectedness of the pores in the models under study, together with pore size, porosity and En ranges comparable to bone tissue, it can be determined that these scaffolds have great viability as potential bone implants, and great applicability in other areas of science.
Description
Keywords
Implantes óseos, Diseño con ayuda de computador, Sistema de imagen tridimensional
