Thesis Simulación computacional de un flujo en una columna de lixiviación mediante COMSOL
Loading...
Date
2021
Authors
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería civil de Minas
Campus
Campus Casa Central Valparaíso
Abstract
La lixiviación en pilas corresponde a uno de los métodos mineros más utilizados a la hora de extraer cobre a partir de la roca chancada. Es por esto que es importante poder representar de una forma más simple este proceso, a través de modelos que permitan recrear las condiciones de tratamiento de las pilas. Diversos estudios se han encargado de caracterizar el comportamiento de las pilas de lixiviación, tanto para mejorar la recuperación de cobre, como también el desempeño del flujo de las soluciones. Sin embargo, el enfoque de estos trabajos ha sido solamente en el mineral, que es el principal material que compone a la pila, dejando de lado la sección encargada de realizar el drenaje de las soluciones ricas en cobre.
En este contexto, la presente investigación se ha centrado en el comportamiento fluido dinámico de la zona del cover, el cual corresponde al revestimiento de las tuberías de drenaje ubicadas en la parte inferior de la pila.
Se construyeron modelos computacionales de columnas de lixiviación a través del software Comsol Multiphysics, en los cuales se fue variando el tamaño y disposición de las partículas que componen el cover o revestimiento de la zona de drenaje, para así, mediante la simulación del paso de un flujo a través de esta, a distintas velocidades, se pueda analizar el comportamiento de la conductividad hidráulica. Estas configuraciones de partículas son monotamaño y se refieren a una grava sintética hecha de HDPE.
Los resultados demuestran que, para arreglos distintos de partículas del mismo tamaño, la conductividad hidráulica es mayor en aquel que posea la mayor porosidad, debido a que existe más espacio por donde puede circular el flujo. Al modificar el tamaño de partícula, pero manteniendo el ordenamiento de las mismas, se obtienen dos comportamientos distintos para cada caso. En el Arreglo 1, una disminución del tamaño de partícula produce un aumento de la porosidad y una disminución de la conductividad hidráulica, lo cual se explica con que a pesar de que la porosidad aumente, estos poros son más pequeños, dificultando el paso del fluido, disminuyendo la conductividad hidráulica del medio. En cambio, para el Arreglo 2, una disminución del tamaño de partícula trae consigo una disminución de la porosidad, obteniendo valores de conductividad hidráulica menores, tal como se espera.
Heap leaching process correspond to one of the most used mining method when extracting copper from crushed rock. That is why it is important to be able to represent this process in a simpler way, through models that allow recreate the condition of treatment of the heaps. Several studies have been commissioned to characterize the behaviour of the heap leaching, both to improve copper recovery, as well as the flow performance of solutions. However, the focus of these works has only been on ore, wich is the main material that composes the pile, leaving aside the section responsable for conducting the drainage of copper-rich solutions. In this context, the present investigation has focused on the fluid dinamic behaviour of the cover area, wich corresponds to the lining of the drainage pipes located at the bottom of the heap. Computacional models of leaching columns were built through the software Comsol Multiphysics, in wich the size and arrangement of the particles that make up the cover or lining of the drainage zone were varied, thus, by simulating the passage of a flow through it at different speeds, the behaviour of the hydraulic conductivity can be analyzed. These particle configurations are monosize and refer to a synthetic gravel made of HDPE. The results show that, for different arrangements of particles of the same size, the hydraulic conductivity is greater in the one with the greatest porosity, because is more space where the flow can circulate. By modifying the particle size, but maintaining the order of the same, two different behaviours are obtained for each case. In Arrangement 1, a decrease in particle size produces an increase in porosity and a decrease in hydraulic conductivity, wich is explained by the fact that although porosity increases, these pores are smaller, hindering the passage of fluid, decreeasing the hydraulic conductivity of the medium. In contrast, for Arragement 2, a decrease in particle size results in a decrease in porosity, obtaining lower hydraulic conductivity values, as expected.
Heap leaching process correspond to one of the most used mining method when extracting copper from crushed rock. That is why it is important to be able to represent this process in a simpler way, through models that allow recreate the condition of treatment of the heaps. Several studies have been commissioned to characterize the behaviour of the heap leaching, both to improve copper recovery, as well as the flow performance of solutions. However, the focus of these works has only been on ore, wich is the main material that composes the pile, leaving aside the section responsable for conducting the drainage of copper-rich solutions. In this context, the present investigation has focused on the fluid dinamic behaviour of the cover area, wich corresponds to the lining of the drainage pipes located at the bottom of the heap. Computacional models of leaching columns were built through the software Comsol Multiphysics, in wich the size and arrangement of the particles that make up the cover or lining of the drainage zone were varied, thus, by simulating the passage of a flow through it at different speeds, the behaviour of the hydraulic conductivity can be analyzed. These particle configurations are monosize and refer to a synthetic gravel made of HDPE. The results show that, for different arrangements of particles of the same size, the hydraulic conductivity is greater in the one with the greatest porosity, because is more space where the flow can circulate. By modifying the particle size, but maintaining the order of the same, two different behaviours are obtained for each case. In Arrangement 1, a decrease in particle size produces an increase in porosity and a decrease in hydraulic conductivity, wich is explained by the fact that although porosity increases, these pores are smaller, hindering the passage of fluid, decreeasing the hydraulic conductivity of the medium. In contrast, for Arragement 2, a decrease in particle size results in a decrease in porosity, obtaining lower hydraulic conductivity values, as expected.
Description
Keywords
Lixiviación, Cobre, Procesamiento de minerales, Extracción metalúrgica
