Thesis Caracterización de materiales dieléctricos para el diseño y fabricación, mediante impresión 3D, de antenas dieléctricas de onda milimétrica
Loading...
Date
2024-08
Authors
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Electrónica
Departament
Campus
Campus Casa Central Valparaíso
Abstract
Este trabajo tiene como principal objetivo caracterizar materiales dieléctricos a alta frecuencia, utilizados para fabricar antenas dieléctricas mediante impresión 3D. Por esta razón, se detallan las consideraciones necesarias para seleccionar el método adecuado que permita especificar los materiales en función de sus características y de la banda de frecuencia.
En este estudio, el primer método desarrollado es el de anillo resonador. Se explican sus fundamentos teóricos y se justifica el uso de un anillo resonador complementario (CSRR) para este proyecto. Utilizando el software Ansys HFSS, se diseña un anillo con una frecuencia de resonancia de 15 GHz, que se fabrica e implementa. Las mediciones realizadas evidencian la importancia de una correcta calibración en la frecuencia de operación y la necesidad de muestras pequeñas para obtener una caracterización satisfactoria. Los materiales caracterizados a esta frecuencia son: ABS320, ABS440, ABS650, ABS800, ABS1000, ABS1200 y PLA.
A continuación, en la banda Ka, se implementa el método de Nicolson-Ross-Weir (NRW) utilizando guías de onda WR-28. Inicialmente, se realizan simulaciones en Ansys HFSS para especificar muestras de grosor menor a 1 mm; sin embargo, se cambia el enfoque a ejemplares de 3 mm, lo que permite prevenir brechas de aire y obtener resultados satisfactorios con esta técnica. Se caracterizan los mismos siete materiales mencionados anteriormente.
Finalmente, en las bandas V y W se busca caracterizar los materiales utilizando el método de espacio libre. Este método emplea la transmisión entre antenas para determinar los valores dieléctricos de las muestras. Se detalla la creación de un banco de pruebas diseñado para reducir algunas incertidumbres presentes en esta técnica y se ofrecen sugerencias para una mejor implementación.
This work aims to characterize dielectric materials at high frequencies, used for manufacturing dielectric antennas through 3D printing. For this reason, it details the necessary considerations for selecting the appropriate method to specify materials based on their characteristics and the frequency band. The first method developed in this study is the resonant ring method. Its theoretical foundations are explained, and the use of a Complementary Split Ring Resonator (CSRR) is justified for this project. Using Ansys HFSS software, a ring with a resonance frequency of 15 GHz is designed, fabricated, and implemented. The measurements taken highlight the importance of proper calibration at the operating frequency and the need for small samples to achieve satisfactory characterization. The materials characterized at this frequency are: ABS320, ABS440, ABS650, ABS800, ABS1000, ABS1200, and PLA. Next, in the Ka band, the Nicolson-Ross-Weir (NRW) method is implemented using WR-28 waveguides. Initially, simulations are performed in Ansys HFSS to specify samples with a thickness of less than 1 mm; however, the approach is changed to 3 mm specimens, which helps prevent air gaps and achieve satisfactory results with this technique. The same seven materials mentioned earlier are characterized. Finally, in the V and W bands, the materials are characterized using the free-space method. This method employs transmission between antennas to determine the dielectric values of the samples. The creation of a test bench designed to reduce some uncertainties present in this technique is detailed, and suggestions for better implementation are provided.
This work aims to characterize dielectric materials at high frequencies, used for manufacturing dielectric antennas through 3D printing. For this reason, it details the necessary considerations for selecting the appropriate method to specify materials based on their characteristics and the frequency band. The first method developed in this study is the resonant ring method. Its theoretical foundations are explained, and the use of a Complementary Split Ring Resonator (CSRR) is justified for this project. Using Ansys HFSS software, a ring with a resonance frequency of 15 GHz is designed, fabricated, and implemented. The measurements taken highlight the importance of proper calibration at the operating frequency and the need for small samples to achieve satisfactory characterization. The materials characterized at this frequency are: ABS320, ABS440, ABS650, ABS800, ABS1000, ABS1200, and PLA. Next, in the Ka band, the Nicolson-Ross-Weir (NRW) method is implemented using WR-28 waveguides. Initially, simulations are performed in Ansys HFSS to specify samples with a thickness of less than 1 mm; however, the approach is changed to 3 mm specimens, which helps prevent air gaps and achieve satisfactory results with this technique. The same seven materials mentioned earlier are characterized. Finally, in the V and W bands, the materials are characterized using the free-space method. This method employs transmission between antennas to determine the dielectric values of the samples. The creation of a test bench designed to reduce some uncertainties present in this technique is detailed, and suggestions for better implementation are provided.
Description
Keywords
Sistemas de comunicación banda ancha, Transmisiones digitales, Diseño e implementación de software
