Thesis Diseño y construcción de banco de carga resistivo para motor ciclo Otto Kubota DG972-E2
Loading...
Date
2024-12
Authors
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Mecánica
Campus
Campus Casa Central Valparaíso
Abstract
Este proyecto aborda el diseño, construcción y validación de un banco de carga resistivo para el motor Ciclo Otto Kubota DG972-E2. El objetivo fue desarrollar un equipo funcional que permitiera evaluar el desempeño del motor bajo condiciones controladas, asegurando mediciones precisas y seguras.
El banco se diseñó considerando un sistema eléctrico modular, una estructura de soporte robusta y un sistema de enfriamiento basado en convección forzada en bancos de tubos. Se emplearon materiales económicos y accesibles, como resistencias de cuarzo y acero estructural, optimizando recursos sin comprometer el desempeño técnico.
Durante la construcción, se realizaron ajustes clave, como la mejora de placas de soporte y la sustitución de ventiladores para asegurar la funcionalidad del equipo. El proceso incluyó corte, soldadura y ensamblaje, cumpliendo con las especificaciones técnicas establecidas.
La validación del banco confirmó su operatividad en condiciones reales. El sistema eléctrico alcanzó un consumo máximo probado de 3500 W, limitado por la red eléctrica disponible, con un desempeño estable de todos los circuitos. El sistema de ventilación demostró ser efectivo en la disipación de calor, aunque se identificaron oportunidades de mejora en su eficiencia. La estructura soportó las cargas operativas sin fallas, garantizando su robustez.
En conclusión, el banco de carga resistivo cumple con los objetivos del proyecto, ofreciendo una herramienta funcional y segura para pruebas de motores. Este desarrollo constituye un aporte valioso para aplicaciones académicas e industriales, con posibilidades de futuras mejoras y extensiones en su diseño.
This project addresses the design, construction, and validation of a resistive load bank for the Kubota DG972-E2 Otto Cycle engine. The objective was to develop a functional device capable of evaluating the engine's performance under controlled conditions, ensuring precise and safe measurements. The load bank was designed with a modular electrical system, a robust support structure, and a cooling system based on forced convection in tube banks. Cost-effective and readily available materials, such as quartz resistors and structural steel, were utilized to optimize resources without compromising technical performance. Key adjustments were made during construction, including improvements to support plates and the replacement of fans to ensure the functionality of the system. The process involved cutting, welding, and assembly, adhering to the established technical specifications. The validation process confirmed the operational performance of the load bank under real-world conditions. The electrical system reached a maximum tested consumption of 3500 W, limited by the available electrical network, with stable performance across all circuits. The ventilation system effectively dissipated heat, though opportunities for efficiency improvements were identified. The structure withstood operational loads without failures, ensuring its robustness. In conclusion, the resistive load bank meets the project's objectives, providing a functional and safe tool for engine testing. This development represents a valuable contribution for academic and industrial applications, with potential for future improvements and design enhancements.
This project addresses the design, construction, and validation of a resistive load bank for the Kubota DG972-E2 Otto Cycle engine. The objective was to develop a functional device capable of evaluating the engine's performance under controlled conditions, ensuring precise and safe measurements. The load bank was designed with a modular electrical system, a robust support structure, and a cooling system based on forced convection in tube banks. Cost-effective and readily available materials, such as quartz resistors and structural steel, were utilized to optimize resources without compromising technical performance. Key adjustments were made during construction, including improvements to support plates and the replacement of fans to ensure the functionality of the system. The process involved cutting, welding, and assembly, adhering to the established technical specifications. The validation process confirmed the operational performance of the load bank under real-world conditions. The electrical system reached a maximum tested consumption of 3500 W, limited by the available electrical network, with stable performance across all circuits. The ventilation system effectively dissipated heat, though opportunities for efficiency improvements were identified. The structure withstood operational loads without failures, ensuring its robustness. In conclusion, the resistive load bank meets the project's objectives, providing a functional and safe tool for engine testing. This development represents a valuable contribution for academic and industrial applications, with potential for future improvements and design enhancements.
Description
Keywords
Motores de combustión interna, Fuente de energía limpia y eficiente, Mejora contínua de procesos