Thesis Descripción numérica del fracturamiento inducido por compresión de medios granulares
Loading...
Date
2024
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil de Minas
Campus
Campus Santiago San Joaquín
Abstract
Este estudio analizó el comportamiento mecánico de la fractura de partículas irregulares sometidas a compresión lenta, utilizando métodos de elementos discretos (DEM, por sus siglas en ingles). El material granular se recreó utilizando el modelo de partículas enlazadas (BPM, por sus siglas en inglés) en el software EDEM. Se investigó cómo la forma de la partícula y la masa estudiada influyen en la resistencia a la compresión. Además, se analizó el comportamiento de la ruptura de enlace al aplicar diferentes fuerzas compresivas.
Se modelaron partículas irregulares compuestas por meta-partículas esféricas, unidas unas a otras a través de enlaces paralelos cementados. Los casos de estudios fueron masas de partículas de 35, 70 y 105 kg, a las que se aplicaron distintas fuerzas compresivas. Esto permitió estudiar la distribución de fuerzas, el comportamiento de enlaces rotos y la transmisión de fuerzas a través de los enlaces entre partículas, generando una fractura.
Los resultados obtenidos indican que las partículas irregulares presentaron una menor resistencia en comparación con las partículas esféricas, puesto que presentaron una distribución desigual de esfuerzos. Conforme se incrementó la fuerza aplicada, el porcentaje de enlaces rotos aumentó. Se observó una mayor concentración de esfuerzos en los enlaces ubicados en los puntos de contactos, entre partículas madre y la placa. De manera similar, se obtuvo que la masa de estudio tiene gran influencia en la resistencia a la compresión, porque se generaba mayor distribución de las fuerzas, resultando en menor concentración de esfuerzos. Además, el tamaño de las meta-partículas resultó ser un factor relevante en la resistencia a la fractura, destacando la importancia de encontrar un equilibrio adecuado en su definición para optimizar la simulación.
Estos hallazgos tienen implicaciones en diversas industrias, como la minería. En la que, comprender el comportamiento de la fractura puede llevar al desarrollo de métodos de extracción que consideren el fracturamiento secundario presente en los métodos de “caving”. Sin embargo, la utilización del método BPM en este trabajo presentó algunas limitaciones, como la necesidad de mayor capacidad computacional para representar de manera más detalla el grano de una roca.
This study sought to analyze the fracture mechanics behavior of irregular particles subjected to slow compression using discrete element methods (DEM). The granular material was recreated using the bonded particle model (BPM) in EDEM software. How the particle shape and mass studied influence the compressive strength was investigated. In addition, the bond-breaking behavior upon application of different compressive forces was analyzed. Irregular particles composed of spherical meta-particles, bonded to each other through cemented parallel bonds, were modeled. The case studies were particle masses of 35, 70 and 105 kg, to which different compressive forces were applied. This made it possible to study the distribution of forces, the behavior of broken bonds and the transmission of forces through the bonds between particles, generating a fracture. The results obtained indicate that the irregular particles presented a lower resistance compared to the spherical particles, since they presented an unequal stress distribution. As the applied force increased, the percentage of broken bonds increased. A higher stress concentration was observed in the bonds located at the contact points between the parent particles and the plate. Similarly, it was obtained that the study mass has a great influence on the compressive strength, because a greater distribution of forces was generated, resulting in a lower stress concentration. In addition, the size of the meta-particles turned out to be a relevant factor in the fracture toughness, highlighting the importance of finding an adequate balance in its definition to optimize the simulation. These findings have implications in various industries, such as mining. In which, understanding fracture behavior can lead to the development of extraction methods that consider the secondary fracturing present in caving methods. However, the use of the BPM method in this work presented some limitations, such as the need for more computational capacity to represent the grain of a rock in more detail.
This study sought to analyze the fracture mechanics behavior of irregular particles subjected to slow compression using discrete element methods (DEM). The granular material was recreated using the bonded particle model (BPM) in EDEM software. How the particle shape and mass studied influence the compressive strength was investigated. In addition, the bond-breaking behavior upon application of different compressive forces was analyzed. Irregular particles composed of spherical meta-particles, bonded to each other through cemented parallel bonds, were modeled. The case studies were particle masses of 35, 70 and 105 kg, to which different compressive forces were applied. This made it possible to study the distribution of forces, the behavior of broken bonds and the transmission of forces through the bonds between particles, generating a fracture. The results obtained indicate that the irregular particles presented a lower resistance compared to the spherical particles, since they presented an unequal stress distribution. As the applied force increased, the percentage of broken bonds increased. A higher stress concentration was observed in the bonds located at the contact points between the parent particles and the plate. Similarly, it was obtained that the study mass has a great influence on the compressive strength, because a greater distribution of forces was generated, resulting in a lower stress concentration. In addition, the size of the meta-particles turned out to be a relevant factor in the fracture toughness, highlighting the importance of finding an adequate balance in its definition to optimize the simulation. These findings have implications in various industries, such as mining. In which, understanding fracture behavior can lead to the development of extraction methods that consider the secondary fracturing present in caving methods. However, the use of the BPM method in this work presented some limitations, such as the need for more computational capacity to represent the grain of a rock in more detail.
Description
Keywords
Modelo de partículas enlazadas, Métdodo de elementos discretos, Partícula irregular