Thesis
Log-likelihood invariance in markov equivalent bayesian networks

dc.contributor.correferenteLobos Yáñez, Claudio
dc.contributor.departmentDepartamento de Informática
dc.contributor.guiaAsín Acha, Roberto Javier
dc.coverage.spatialCampus Santiago San Joaquín
dc.creatorRiquelme Flores, Sofía Isidora
dc.date.accessioned2025-08-01T15:07:53Z
dc.date.available2025-08-01T15:07:53Z
dc.date.issued2025-07
dc.description.abstractBayesian Networks are widely used to model probabilistic relationships between variables through DAGs. However, multiple Bayesian Networks can represent the same set of conditional independencies, forming what is known as a MEC. This presents a challenge in model evaluation, as networks within the same MEC are statistically indistinguishable based on observational data alone. This work investigates whether the log-likelihood function, a standard metric for assessing model fit, remains invariant across all Bayesian Networks in a given MEC. After learning the CPDAG of a Bayesian Network from data, a method is implemented to enumerate DAGs in the corresponding MEC, converting each DAG to a Bayesian Network and compute the log-likelihood for each structure using Bayesian parameter estimation. Structural modifications are also introduced to produce networks outside the original MEC, enabling comparison of log-likelihood values across different equivalence classes. Experiments conducted on benchmark networks (Asia, ALARM, Hepar2) confirm that log-likelihood values remain constant within each MEC and vary significantly when the structure is modified to break v-structures. These findings suggest that log-likelihood invariance can serve as a reliable indicator of MEC membership for Bayesian Networks, allowing for more efficient model evaluation and structure learning without full enumeration.en
dc.description.programIngeniería Civil Informática
dc.format.extent39 páginas
dc.identifier.barcode3560900288121
dc.identifier.urihttps://repositorio.usm.cl/handle/123456789/75846
dc.language.isoen
dc.publisherUniversidad Técnica Federico Santa María
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectBayesian networks
dc.subjectMarkov equivalence class
dc.subjectLog-likelihood
dc.subject.ods4 Educación de calidad
dc.subject.ods9 Industria, innovación e infraestructura
dc.subject.ods17 Alianzas para lograr los objetivos
dc.titleLog-likelihood invariance in markov equivalent bayesian networks
dspace.entity.typeTesis

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
3560900288121.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: