Thesis Diseño y desarrollo de una matriz con el fin de realizar anillos de alta densidad sintetizados mediante FAST/SPS
Loading...
Date
2025-01
Authors
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Mecánica
Departament
Campus
Campus Santiago San Joaquín
Abstract
La presente investigación se centra en el diseño y desarrollo de una matriz destinada a la fabricación de anillos de alta densidad utilizando la tecnología FAST/SPS (Field-Assisted Sintering Technique/Spark Plasma Sintering). Este método permite la sinterización rápida mediante la aplicación de presión uniaxial y corriente eléctrica pulsada, optimizando tiempos de procesamiento y asegurando una densificación homogénea. El objetivo general es diseñar y validar una matriz capaz de soportar las altas temperaturas y presiones necesarias para lograr anillos con propiedades mecánicas superiores y baja porosidad. Para ello, se definieron requerimientos técnicos como resistencia térmica, compatibilidad de materiales y precisión dimensional. El grafito de alta densidad fue seleccionado como material principal debido a su estabilidad térmica y conductividad. El desarrollo siguió una metodología estructurada: análisis de necesidades del cliente, evaluación de diseños conceptuales y detallados, y simulaciones de resistencia mecánica, transferencia de calor y comportamiento eléctrico. Los resultados demostraron que la matriz diseñada cumple con los requisitos establecidos, garantizando una distribución uniforme de temperatura y presión, y evitando defectos estructurales en los anillos. Las conclusiones destacan que el diseño es viable para la sinterización de anillos en condiciones industriales, mejorando la eficiencia energética y reduciendo costos. Asimismo, la investigación sienta las bases para optimizar procesos de fabricación mediante FAST/SPS, abriendo oportunidades para aplicaciones avanzadas en la industria de materiales
This research focuses on the design and development of a matrix for manufacturing highdensity rings using the FAST/SPS (Field-Assisted Sintering Technique/Spark Plasma Sintering) technology. This method enables rapid sintering through the application of uniaxial pressure and pulsed electric current, optimizing processing times and ensuring homogeneous densification. The primary goal is to design and validate a matrix capable of withstanding the high temperatures and pressures required to produce rings with superior mechanical properties and low porosity. Technical requirements such as thermal resistance, material compatibility, and dimensional precision were established. High-density graphite was chosen as the main material due to its thermal stability and conductivity. The development followed a structured methodology: analysis of customer needs, evaluation of conceptual and detailed designs, and simulations of mechanical resistance, heat transfer, and electrical behavior. The results demonstrated that the designed matrix meets the established requirements, ensuring uniform temperature and pressure distribution while preventing structural defects in the rings. The conclusions highlight that the design is feasible for ring sintering under industrial conditions, improving energy efficiency and reducing costs. Additionally, this research lays the foundation for optimizing manufacturing processes using FAST/SPS, opening opportunities for advanced applications in the materials industry.
This research focuses on the design and development of a matrix for manufacturing highdensity rings using the FAST/SPS (Field-Assisted Sintering Technique/Spark Plasma Sintering) technology. This method enables rapid sintering through the application of uniaxial pressure and pulsed electric current, optimizing processing times and ensuring homogeneous densification. The primary goal is to design and validate a matrix capable of withstanding the high temperatures and pressures required to produce rings with superior mechanical properties and low porosity. Technical requirements such as thermal resistance, material compatibility, and dimensional precision were established. High-density graphite was chosen as the main material due to its thermal stability and conductivity. The development followed a structured methodology: analysis of customer needs, evaluation of conceptual and detailed designs, and simulations of mechanical resistance, heat transfer, and electrical behavior. The results demonstrated that the designed matrix meets the established requirements, ensuring uniform temperature and pressure distribution while preventing structural defects in the rings. The conclusions highlight that the design is feasible for ring sintering under industrial conditions, improving energy efficiency and reducing costs. Additionally, this research lays the foundation for optimizing manufacturing processes using FAST/SPS, opening opportunities for advanced applications in the materials industry.
Description
Keywords
FAST/SPS (Field-Assisted Sintering Technique / Spark Plasma Sintering), Matriz de grafito de alta densidad, Sinterización rápida, Resistencia térmica y mecánica, Simulación computacional, Optimización de fabricación