Thesis Impacto de variables geometalúrgicas en definición de polígonos de explotación en corto plazo
Loading...
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil de Minas
Campus
Campus Santiago San Joaquín
Abstract
La geometalurgia es una disciplina que combina conceptos de geología y metalurgia y se enfoca en comprender la variabilidad de los yacimientos. Para esto, se apoya en la creación de modelos geometalúrgicos que proporcionan una representación de la variabilidad espacial de un yacimiento y permiten prever cómo se comportarán los minerales a lo largo de los procesos de extracción y procesamiento. Por su parte, la planificación a corto plazo es crucial en las operaciones mineras y su principal desafío es el control de la calidad del mineral ya que este puede variar considerablemente, por lo que es fundamental gestionar dicha variabilidad para garantizar que el mineral enviado a la planta de procesamiento cumpla con los estándares de calidad deseados. Dentro del proceso de planificación y de las operaciones mineras existen distintas etapas en las que se deben dibujar polígonos que se utilizarán como pautas operativas a lo largo del tiempo. Estos polígonos son creados manualmente por el ingeniero en función de su experiencia y conocimiento del yacimiento. Sin embargo, la creación automática de estos polígonos puede mejorar la calidad y reducir los esfuerzos necesarios. Por esta razón, optimizar los procesos de la industria minera es un objetivo fundamental para garantizar su rentabilidad y eficiencia, por lo que se busca aumentar el beneficio económico a corto plazo que se obtiene de la definición y extracción de polígonos. Para esto, se registran diferentes reglas de mezcla para distintas variables geometalúrgicas con comportamientos no aditivos tal como la recuperación metalúrgica, la dureza del mineral y el consumo de ácido. Luego, se implementan dichas reglas de mezcla en el algoritmo de definición de polígonos propuesto por (Nelis et al., 2022). De esta forma, es posible encontrar la mejor combinación de polígonos que maximizan el beneficio económico mediante la resolución de un algoritmo de generación de columnas. Posteriormente, se valida que el efecto de las reglas de mezcla sea el deseado y se testea en un caso real comparando las geometrías, el valor económico y los tonelajes obtenidos. Finalmente se realiza un ranking de las variables geometalúrgicas que resultaron ser más influyentes en la definición de polígonos.
Geometallurgy is a discipline that combines concepts from geology and metallurgy, focusing on understanding the variability of ore deposits. It relies on the creation of geometallurgical models that provide a representation of the spatial variability of a deposit and allow for predictions of how minerals will behave throughout extraction and processing stages. In mining operations, short-term planning is crucial, and its main challenge lies in controlling ore quality, which can vary considerably. Managing this variability is essential to ensure that the ore sent to the processing plant meets the desired quality standards. Within the planning process and mining operations, various stages require the delineation of polygons that will serve as operational guidelines over time. These polygons are manually created by engineers based on their experience and knowledge of the deposit. However, automating the creation of these polygons can improve quality and reduce the required efforts. For this reason, optimizing processes in the mining industry is a fundamental objective to ensure profitability and efficiency, aiming to increase the short-term economic benefit obtained from the definition and extraction of polygons. To achieve this, different blending rules are recorded for various geometallurgical variables with non-additive behaviors, such as metallurgical recovery, ore hardness, and acid consumption. These blending rules are then implemented in the polygon definition algorithm proposed by Nelis et al. (2022). This approach allows for finding the best combination of polygons that maximizes economic benefit by solving a column generation algorithm. Subsequently, it is validated that the effect of the blending rules is as desired, and the method is tested in a real case by comparing geometries, economic value, and tonnage obtained. Finally, a ranking of the most influential geometallurgical variables in polygon definition is conducted.
Geometallurgy is a discipline that combines concepts from geology and metallurgy, focusing on understanding the variability of ore deposits. It relies on the creation of geometallurgical models that provide a representation of the spatial variability of a deposit and allow for predictions of how minerals will behave throughout extraction and processing stages. In mining operations, short-term planning is crucial, and its main challenge lies in controlling ore quality, which can vary considerably. Managing this variability is essential to ensure that the ore sent to the processing plant meets the desired quality standards. Within the planning process and mining operations, various stages require the delineation of polygons that will serve as operational guidelines over time. These polygons are manually created by engineers based on their experience and knowledge of the deposit. However, automating the creation of these polygons can improve quality and reduce the required efforts. For this reason, optimizing processes in the mining industry is a fundamental objective to ensure profitability and efficiency, aiming to increase the short-term economic benefit obtained from the definition and extraction of polygons. To achieve this, different blending rules are recorded for various geometallurgical variables with non-additive behaviors, such as metallurgical recovery, ore hardness, and acid consumption. These blending rules are then implemented in the polygon definition algorithm proposed by Nelis et al. (2022). This approach allows for finding the best combination of polygons that maximizes economic benefit by solving a column generation algorithm. Subsequently, it is validated that the effect of the blending rules is as desired, and the method is tested in a real case by comparing geometries, economic value, and tonnage obtained. Finally, a ranking of the most influential geometallurgical variables in polygon definition is conducted.
Description
Keywords
Geometalurgia, Proceso industriales, Planificación