Thesis Diseño y evaluación de un prototipo de lecho empacado para la medición de temperatura como base para futuras investigaciones sobre resistencia térmica de contacto
Loading...
Date
2025-08
Authors
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Mecánica
Departament
Campus
Campus Santiago San Joaquín
Abstract
El presente trabajo tuvo como objetivo diseñar y construir un prototipo de lecho empacado para la medición de temperatura, con el propósito de servir como herramienta para futuras investigaciones sobre resistencia térmica de contacto. Se realizó una revisión bibliográfica y un análisis teórico de los mecanismos de transferencia de calor en lechos empacados, identificando conducción, convección natural y forzada, y radiación, así como la influencia de la resistencia térmica de contacto, la rugosidad superficial, la fuerza de compresión y el traslape entre partículas. Posteriormente, se llevaron a cabo simulaciones numéricas en una y dos dimensiones para predecir el comportamiento térmico de lecho y definir las dimensiones y características del prototipo a escala mínima. El prototipo construido incorporó esferas de acero inoxidable 304 y aluminio 1060, instrumentadas con termopares tipo K y un sistema de adquisición basado en Arduino Uno con módulos MAX6675. Las simulaciones permitieron validar la hipótesis de isotermicidad de las esferas y evidenciaron el efecto pared, justificando la inclusión de aislamiento. Los resultados experimentales mostraron que el aluminio alcanzó temperaturas más altas y se calentó más rápido que el acero, coherente con su mayor conductividad térmica. Asimismo, el ajuste del traslape en el modelo permitió reproducir tasas de calentamiento más realistas y reflejar fenómenos no modelados explícitamente, confirmando que la resistencia térmica de contacto es un factor determinante. En conclusión, el prototipo demostró ser una herramienta valida para evaluar la transferencia de calor en lechos empacados, proporcionando información esencial para la calibración de modelos numéricos y estableciendo las bases para futuras investigaciones experimentales y mejoras en la caracterización de la resistencia térmica de contacto.
This work aimed to design and construct a packed-bed prototype for temperature measurement, intended as a tool for future studies on contact thermal resistance. A comprehensive literature review and theoretical analysis were conducted to identify the main heat transfer mechanisms in packed beds, including conduction, natural and forced convection, and radiation, as well as the impact of contact thermal resistance, surface roughness, compression force, and particle overlap. Numerical simulations in one and two dimensions were then performed to predict the thermal behavior of the bed and to guide the design of a small-scale prototype. The constructed prototype consisted of stainless steel 304 and aluminum 1060 spheres, instrumented with type K thermocouples and a data acquisition system based on Arduino Uno with MAX6675 modules. Simulations validated the assumption of isothermal spheres and highlighted wall effects, justifying the use of insulation. Experimental results showed that aluminum reached higher temperatures and heated faster than steel, consistent with its higher thermal conductivity. Adjusting the particle overlap in the model allowed more realistic heating rates and captured physical phenomena not explicitly modeled, confirming that contact thermal resistance is a critical factor. In conclusion, the prototype proved to be a reliable tool for investigating heat transfer in packed beds, providing essential data for calibrating numerical models and establishing a foundation for future experimental studies and improvements in the characterization of contact thermal resistance.
This work aimed to design and construct a packed-bed prototype for temperature measurement, intended as a tool for future studies on contact thermal resistance. A comprehensive literature review and theoretical analysis were conducted to identify the main heat transfer mechanisms in packed beds, including conduction, natural and forced convection, and radiation, as well as the impact of contact thermal resistance, surface roughness, compression force, and particle overlap. Numerical simulations in one and two dimensions were then performed to predict the thermal behavior of the bed and to guide the design of a small-scale prototype. The constructed prototype consisted of stainless steel 304 and aluminum 1060 spheres, instrumented with type K thermocouples and a data acquisition system based on Arduino Uno with MAX6675 modules. Simulations validated the assumption of isothermal spheres and highlighted wall effects, justifying the use of insulation. Experimental results showed that aluminum reached higher temperatures and heated faster than steel, consistent with its higher thermal conductivity. Adjusting the particle overlap in the model allowed more realistic heating rates and captured physical phenomena not explicitly modeled, confirming that contact thermal resistance is a critical factor. In conclusion, the prototype proved to be a reliable tool for investigating heat transfer in packed beds, providing essential data for calibrating numerical models and establishing a foundation for future experimental studies and improvements in the characterization of contact thermal resistance.
Description
Keywords
Lecho empacado, Resistencia térmica, Transferencia de calor, Simulación numérica, Almacenamiento térmico, Prototipo experimental, Medición de temperatura