Thesis Evaluación experimental del salto de presión en un modelo de válvula aórtica compatible con ultrasonido: diseño, construcción y análisis hemodinámico
Loading...
Date
2026-01
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Mecánica
Departament
Campus
Campus Santiago San Joaquín
Abstract
Las enfermedades valvulares aórticas constituyen una patología de alta prevalencia, cuyo diagnóstico y manejo dependen críticamente de la estimación precisa del gradiente de presión transvalvular. Si bien el cateterismo cardíaco es el estándar de referencia, su naturaleza invasiva limita su uso rutinario frente a la ecocardiografía Doppler. Sin embargo, existen discrepancias documentadas entre ambas técnicas en escenarios hemodinámicos complejos. El objetivo de este trabajo fue implementar y validar una plataforma experimental híbrida que permitiera correlacionar mediciones invasivas y no invasivas utilizando un modelo físico (fantoma) de válvula aórtica. Se diseñó y fabricó un modelo anatómico mediante impresión 3D en silicona, optimizando el espesor de la raíz aórtica para garantizar la integridad estructural bajo flujo pulsátil. El fantoma se integró en un banco de pruebas instrumentado con transductores de presión y un sistema de ultrasonido programable, utilizando un fluido análogo a la sangre. Los resultados demostraron la viabilidad del modelo para replicar la dinámica de apertura y cierre valvular. Las mediciones invasivas registraron un salto de presión medio de 10,6 mmHg. El análisis del flujo reveló un régimen laminar, donde las pérdidas viscosas predominan, limitando la aplicabilidad directa de la ecuación de Bernoulli simplificada para la estimación de magnitudes absolutas. No obstante, se estableció una alta correlación morfológica y temporal entre el gradiente de presión invasivo y el perfil de velocidad Doppler, validando la capacidad de la plataforma para rastrear fielmente la dinámica del flujo sanguíneo y sentando las bases para futuras investigaciones en regímenes turbulentos.
Aortic valve diseases are a highly prevalent condition, whose diagnosis and management critically depend on the accurate estimation of the transvalvular pressure gradient. While cardiac catheterization is the gold standard, its invasive nature limits its routine use compared to Doppler echocardiography. However, documented discrepancies exist between both techniques in complex hemodynamic scenarios. The objective of this work was to implement and validate a hybrid experimental platform to correlate invasive and non-invasive measurements using a physical model (phantom) of the aortic valve. An anatomical model was designed and manufactured using 3D printing in silicone, optimizing the aortic root thickness to ensure structural integrity under pulsatile flow. The phantom was integrated into a test bench instrumented with pressure transducers and a programmable ultrasound system, using a blood-imicking fluid. The results demonstrated the viability of the model to replicate valve opening and closing dynamics. Invasive measurements recorded a mean pressure drop of 10.6 mmHg. Flow analysis revealed a laminar regime (Re ≈ 960) where viscous losses predominate, limiting the direct applicability of the simplified Bernoulli equation for absolute magnitude estimation. Nevertheless, a high morphological and temporal correlation was established between the invasive pressure gradient and the Doppler velocity profile, validating the platform’s ability to faithfully track blood flow dynamics and laying the groundwork for future research in turbulent regimes.
Aortic valve diseases are a highly prevalent condition, whose diagnosis and management critically depend on the accurate estimation of the transvalvular pressure gradient. While cardiac catheterization is the gold standard, its invasive nature limits its routine use compared to Doppler echocardiography. However, documented discrepancies exist between both techniques in complex hemodynamic scenarios. The objective of this work was to implement and validate a hybrid experimental platform to correlate invasive and non-invasive measurements using a physical model (phantom) of the aortic valve. An anatomical model was designed and manufactured using 3D printing in silicone, optimizing the aortic root thickness to ensure structural integrity under pulsatile flow. The phantom was integrated into a test bench instrumented with pressure transducers and a programmable ultrasound system, using a blood-imicking fluid. The results demonstrated the viability of the model to replicate valve opening and closing dynamics. Invasive measurements recorded a mean pressure drop of 10.6 mmHg. Flow analysis revealed a laminar regime (Re ≈ 960) where viscous losses predominate, limiting the direct applicability of the simplified Bernoulli equation for absolute magnitude estimation. Nevertheless, a high morphological and temporal correlation was established between the invasive pressure gradient and the Doppler velocity profile, validating the platform’s ability to faithfully track blood flow dynamics and laying the groundwork for future research in turbulent regimes.
Description
Keywords
Válvula aórtica, Salto de presión, Ultrasonido, Impresión 3D
