PLANIFICACIÓN DE LA EXPANSIÓN DE GENERACIÓN Y TRANSMISIÓN BAJO INCERTIDUMBRE UTILIZANDO TÉCNICAS DE DESCOMPOSICIÓN

ARRIAZA MUÑOZ, JUAN FRANCISCO (2018)

Catalogado desde la version PDF de la tesis.

Tesis Pregrado

El siguiente trabajo de Memoria, detalla la formulación del problema de la expansión de los sistemas de generación y transmisión eléctricos de manera conjunta considerando incertidumbre en demanda utilizando como métodos de resolución al algoritmo de descomposición de Benders. Básicamente se tiene como antecedente un problema completo, el cual tiene naturaleza lineal entera-mixta con característica estocástica debido a la incertidumbre de la demanda, conllevando un gran número de variables y restricciones. Debido al gran tamaño de este problema, es que se aplica al algoritmo iterativo de descomposición de Benders, fraccionando a la formulación completa en un problema maestro de inversión y un problema esclavo o subproblema de operación. El primero solo se encarga de las variables enteras o binarias, es decir en cada iteración entrega un plan de inversión, el cual se envía y se evalúa en el problema de optimización lineal. A partir de esta operación se obtienen las variables duales, que se utilizan como indicadores económicos para los cortes de Benders.En cuanto a la validación del algoritmo, este se aplica en dos sistemas de prueba, Garver y el sistema eléctrico nacional (SEN).Además, extendiendo los objetivos preliminares presentados en esta Memoria, se propone añadir restricciones de predespacho en el problema de planificación. Con tal de comparar los resultados obtenidos desde el caso con despacho económico, teniendo en cuenta que el predespacho es mucho mejor representación del problema de operación. Este se prueba tres sistemas, uno de 5 barras, el IEEE 118 y el SEN.

The following study copes with the co-optimization of the generation and transmission capacity considering the load uncertainty using a Benders decomposition method. Basically, we have as a background a complete problem, which has the linear-mixed nature with stochastic characteristic due to the load uncertainty, which involves many variables and restraints. Due to the large size of this problem, it is applied to the iterative algorithm of Benders decomposition, fractionating the complete formulation into a master investment problem and at operation subproblem. The first one only takes care of the integer or binary variables, that is, in each iteration it delivers an investment plan, which is sent and evaluated in the linear optimization problem. From this operation, the dual variables are obtained, which are used as economic indicators for the Benders cuts.About validation of the algorithm, this applies two test systems, Garver and the National Electrical System (SEN).In addition, the preliminary objectives are expanded in this report, pre-dispatch restrictions are proposed in the planning problem. In order to compare the results from case with economic dispatch, bearing in mind that pre-dispatch or unit commitment is much better representation of the operation problem. This is tested on three systems, one of 5 buses, the IEEE 118 and the SEN.