Thesis
A COMPUTATIONAL APPROACH TO FOURIER SYNTHESIS FROM NON-UNIFORM SAMPLES

dc.contributor.advisorARAYA LOPEZ, MAURICIO ALEJANDRO
dc.contributor.authorLIZANA ESTIVILL, VICENTE
dc.contributor.departmentUniversidad Técnica Federico Santa María. Departamento de Informática
dc.contributor.otherTORRES LOPEZ, CLAUDIO ESTEBAN
dc.coverage.spatialCampus Casa Central Valparaíso
dc.date.accessioned2024-10-31T07:21:37Z
dc.date.available2024-10-31T07:21:37Z
dc.date.issued2020-02
dc.description.abstractGaussian Process Regression Image Synthesis is a proposed numerical method intended for image reconstruction via Inverse Fourier Transform directly from a partial non-uniform sampling of the Fourier Space. The motivation for this comes from the field of radio interferometry, where the measurements are obtained within the Fourier space and part of the algorithm for the reconstruction of the images relies on altering the samples in order to meet the restrictions of the Inverse Fast Fourier Transform. In this work a proposed GPR based algorithm is described, a prototype of it is implemented and then empirically evaluated against the current FFT-based approach. The results of these experiments are positive enough to expect that, with further research and development, this method can become a competitive contender in this fieldes_CL
dc.description.degreeINGENIERO CIVIL INFORMÁTICOes_CL
dc.description.programDEPARTAMENTO DE INFORMÁTICA. INGENIERÍA CIVIL INFORMÁTICA
dc.identifier.barcode185499170utfsm.pdf
dc.identifier.urihttps://repositorio.usm.cl/handle/123456789/64396
dc.subjectSINTESIS DE IMAGEN
dc.subjectINTERFEROMETRÍA DE RADIO
dc.subjectTRANSFORMADA DE FOURIER
dc.titleA COMPUTATIONAL APPROACH TO FOURIER SYNTHESIS FROM NON-UNIFORM SAMPLES
dc.typeTesis de Pregrado
dspace.entity.typeTesis

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
m18549917-0.pdf
Size:
2.63 MB
Format:
Adobe Portable Document Format