Thesis MODELACIÓN Y OPTIMIZACIÓN DE CICLOS BRAYTON DE RECOMPRESIÓN CON SCO2 EN ESTADO CUASI-ESTACIONARIO PARA DIFERENTES CONDICIONES AMBIENTALES Y DE OPERACIÓN
Loading...
Date
2019
Authors
Journal Title
Journal ISSN
Volume Title
Program
UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA UTFSM. DEPARTAMENTO DE INGENIERÍA MECÁNICA. MAGÍSTER EN CIENCIAS DE INGENIERÍA MECÁNICA
Campus
Casa Central Valparaíso
Abstract
Esta Tesis tiene la finalidad de desarrollar un modelo computacional para ciclos Brayton de recompresión con dióxido de carbono en condición supercrítica (sCO2) con enfriamiento en seco por aire para
estudiar variaciones provenientes desde la fuente de calor y las condiciones ambientales. Estos ciclos de
potencia son interesantes en tecnologías como plantas nucleares, concentración solar de potencia, plantas
geotérmicas, ciclos combinados y acoplados a celdas de combustibles. El modelo fue desarrollado
para ser acoplado a cualquier fuente de calor mencionada con anterioridad. El código desarrollado es
versátil para encontrar el punto de diseño bajo cualquier cambio en los parámetros de entrada (potencia
neta de salida, temperatura de entrada a la turbina o compresor, presiones de trabajo, caída de presión del
sistema).
Posteriormente se desarrolla un modelo fuera de diseño para estudiar los efectos sobre la eficiencia
térmica del ciclo Brayton de recompresión bajo variaciones del calor de entrada y condiciones ambientales.
Para ello se propone realizar un mapeo para diferentes condiciones de entrada variables: temperatura
ambiente y calor recibido, Obteniendo polinomios de interpolación que determinan la eficiencia térmica
del ciclo.
Por otro lado se estudia el impacto de considerar un enfriador discretizado y con propiedades constantes.
Se demuestra que al considerar propiedades constantes se obtienen diferencias desde 15% hasta
17% en la conductancia del enfriador.
In this thesis a computational model was developed for recompression Brayton cycles with carbon dioxide in supercritical condition (sCO 2) with dry cooling to study variations coming from the heat source and the environmental conditions. These power cycles are interesting in technologies such as nuclear power plants, solar power concentrators, geothermal plants, combined cycles and coupled to fuel cells. The model was developed to be coupled to any heat source mentioned above. The developed code is versatile to find the design point under any change in input parameters (net output power, turbine or compressor inlet temperature, pressures, system pressure drop). An off design model was developed to study the effects on thermal efficiency of the recompression Brayton cycle under variations of input heat and environmental conditions. To do this, it is proposed to perform a mapping for different variable input conditions: ambient temperature and received heat, obtaining interpolation polynomials that determine the thermal efficiency of the cycle. On the other hand, the impact of considering a discretized cooler with constant properties is studied. It is shown that when considering constant properties differences are obtained from 15% to 17% in the conductance of the cooler.
In this thesis a computational model was developed for recompression Brayton cycles with carbon dioxide in supercritical condition (sCO 2) with dry cooling to study variations coming from the heat source and the environmental conditions. These power cycles are interesting in technologies such as nuclear power plants, solar power concentrators, geothermal plants, combined cycles and coupled to fuel cells. The model was developed to be coupled to any heat source mentioned above. The developed code is versatile to find the design point under any change in input parameters (net output power, turbine or compressor inlet temperature, pressures, system pressure drop). An off design model was developed to study the effects on thermal efficiency of the recompression Brayton cycle under variations of input heat and environmental conditions. To do this, it is proposed to perform a mapping for different variable input conditions: ambient temperature and received heat, obtaining interpolation polynomials that determine the thermal efficiency of the cycle. On the other hand, the impact of considering a discretized cooler with constant properties is studied. It is shown that when considering constant properties differences are obtained from 15% to 17% in the conductance of the cooler.
Description
Keywords
CICLOS BRAYTON DE RECOMPRESIÓN, FRACCION DE RECOMPRESION, SCO2 CUASI-ESTACIONARIO