Thesis Diseño e implementación de un asistente conversacional basado en modelos de lenguaje para el análisis de datos de educación superior en Chile
Loading...
Date
2025-10
Authors
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Telemática
Departament
Campus
Campus Santiago San Joaquín
Abstract
Este trabajo presenta el diseño e implementación de un asistente conversacional basado en modelos de lenguaje, orientado al análisis de datos de educación superior en Chile. El sistema integra datasets de benchmarking en formato CSV, los procesa en memoria mediante la librería Pandas y entrega resultados en forma de tablas, gráficos y explicaciones comprensibles. Para la orquestación del flujo conversacional se empleó LangGraph, lo que permitió estructurar etapas específicas como la detección de intención, la extracción y validación de filtros, el análisis de información y la visualización automática. La representación de resultados se realiza con Matplotlib, mientras que la interacción con el sistema se implementa a través de una API en FastAPI y un front-end en Streamlit, proporcionando una interfaz accesible y amigable para los usuarios. El asistente fue diseñado para responder consultas en lenguaje natural relacionadas con indicadores clave de educación superior, tales como matrícula, egresados, empleabilidad, rango de ingresos, tasas de retención y programas académicos, entre otros, contribuyendo a la democratización del acceso a la información y al apoyo en la toma de decisiones académicas e institucionales.
This work presents the design and implementation of a conversational assistant powered by language models, aimed at analyzing higher-education data in Chile. The system integrates benchmarking datasets in CSV format, processes them in memory using the Pandas library, and delivers results as tables, charts, and comprehensible explanations. LangGraph was employed to orchestrate the conversational flow, enabling the structuring of specific stages such as intent detection, filter extraction and validation, information analysis, and automatic visualization. Results are rendered with Matplotlib, while interaction with the system is implemented through a FastAPI API and a Streamlit front end, providing an accessible and user-friendly interface. The assistant was designed to answer natural-language queries related to key higher-education indicators—such as enrollment, graduates, employability, income ranges, retention rates, and academic programs, among others—thereby contributing to the democratization of access to information and supporting academic and institutional decision-making.
This work presents the design and implementation of a conversational assistant powered by language models, aimed at analyzing higher-education data in Chile. The system integrates benchmarking datasets in CSV format, processes them in memory using the Pandas library, and delivers results as tables, charts, and comprehensible explanations. LangGraph was employed to orchestrate the conversational flow, enabling the structuring of specific stages such as intent detection, filter extraction and validation, information analysis, and automatic visualization. Results are rendered with Matplotlib, while interaction with the system is implemented through a FastAPI API and a Streamlit front end, providing an accessible and user-friendly interface. The assistant was designed to answer natural-language queries related to key higher-education indicators—such as enrollment, graduates, employability, income ranges, retention rates, and academic programs, among others—thereby contributing to the democratization of access to information and supporting academic and institutional decision-making.
Description
Keywords
Asistente conversacional, Modelos de lenguaje, Matrícula universitaria, Empleabilidad, Tasas de retención, Visualización de datos, Conversational assistant, Language models, University enrollment, Employability, Retention rates, Data visualization