Thesis Estimación del porcentaje mínimo necesario de inversores tipo grid-forming en un contexto de descarbonización del Sistema Eléctrico Nacional
Loading...
Date
2025-08
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Eléctrica
Departament
Campus
Campus Santiago San Joaquín
Abstract
La creciente participación de recursos energéticos basados en convertidores en el sistema eléctrico nacional, impulsada por el proceso de descarbonización, ha reducido de manera significativa la inercia y la capacidad de cortocircuito del sistema, comprometiendo su estabilidad frente a perturbaciones severas. Frente a este escenario, los inversores tipo grid-forming se presentan como una alternativa técnica que permite formar la red estableciendo una tensión y frecuencia de referencia al mismo tiempo que contribuye tanto a la regulación de tensión como a la estabilidad dinámica. El objetivo de este trabajo es determinar el porcentaje mínimo de participación de generación basada en grid-forming en relación con la capacidad total de generación con convertidores en la zona norte del sistema eléctrico nacional, de modo que se cumpla con los requisitos de recuperación dinámica de tensión establecidos por la normativa técnica vigente. Para ello, se realizaron simulaciones dinámicas utilizando un modelo del sistema eléctrico nacional proyectado por el Coordinador Eléctrico Nacional al año 2030, desarrollado en el software DIgSILENT PowerFactory a partir de una base de datos proporcionada por el Coordinador Eléctrico Nacional. Los resultados muestran que, sin la presencia de grid-forming, el sistema no logra cumplir con los estándares mínimos exigidos. Sin embargo, al incorporar inversores grid-forming con almacenamiento en ubicaciones estratégicas, se logra una recuperación de tensión adecuada. Se identifica un porcentaje mínimo de participación del 1% al 6% de participación de grid-forming dependiendo de la capacidad de condensadores síncronos conectados al sistema. Del análisis se destaca la importancia de la barra Kimal en la ubicación de los inversores donde variaciones pequeñas de capacidad de grid-forming esta barra producen cambios importantes en la estabilidad de la tensión. En base a los resultados de las simulaciones se concluye que la incorporación planificada de grid-forming constituye una solución viable para complementar o reemplazar tecnologías convencionales como los condensadores síncronos, aportando significativamente a la seguridad y flexibilidad del sistema eléctrico nacional en un escenario de descarbonización y alta penetración de energías renovables.
The increasing penetration of converter-based resources in the Chilean National Electric System, driven by the decarbonization process, has significantly reduced system inertia and short-circuit capacity, compromising stability under severe disturbances. In this context, grid-forming inverters emerge as a technical alternative capable of establishing reference voltage and frequency while contributing to both voltage regulation and dynamic stability. This study aims to determine the minimum share of generation based on grid-forming inverters, relative to the total converter-based generation capacity in the northern area of the Chilean National Electric System, required to meet the dynamic voltage recovery requirements established by current technical standards. Dynamic simulations were carried out using a projected 2030 system model developed by the Chilean Independent System Operator in DIgSILENT PowerFactory, based on the official system database. The results indicate that, without grid-forming inverters, the system fails to meet minimum voltage recovery standards. However, incorporating grid-forming inverters with energy storage at strategic locations enables adequate voltage recovery. The minimum required share of generation based on grid-forming inverters ranges from 1% to 6%, depending on the synchronous condenser capacity connected to the system. The analysis highlights the critical role of the Kimal substation, where small variations in grid-forming inverter capacity have a significant impact on voltage stability. Based on the simulation results, the planned deployment of grid-forming inverters is identified as a viable solution to complement or replace conventional technologies such as synchronous condensers, providing substantial contributions to the security and flexibility of the Chilean National Electric System in a decarbonized, high-renewable penetration scenario.
The increasing penetration of converter-based resources in the Chilean National Electric System, driven by the decarbonization process, has significantly reduced system inertia and short-circuit capacity, compromising stability under severe disturbances. In this context, grid-forming inverters emerge as a technical alternative capable of establishing reference voltage and frequency while contributing to both voltage regulation and dynamic stability. This study aims to determine the minimum share of generation based on grid-forming inverters, relative to the total converter-based generation capacity in the northern area of the Chilean National Electric System, required to meet the dynamic voltage recovery requirements established by current technical standards. Dynamic simulations were carried out using a projected 2030 system model developed by the Chilean Independent System Operator in DIgSILENT PowerFactory, based on the official system database. The results indicate that, without grid-forming inverters, the system fails to meet minimum voltage recovery standards. However, incorporating grid-forming inverters with energy storage at strategic locations enables adequate voltage recovery. The minimum required share of generation based on grid-forming inverters ranges from 1% to 6%, depending on the synchronous condenser capacity connected to the system. The analysis highlights the critical role of the Kimal substation, where small variations in grid-forming inverter capacity have a significant impact on voltage stability. Based on the simulation results, the planned deployment of grid-forming inverters is identified as a viable solution to complement or replace conventional technologies such as synchronous condensers, providing substantial contributions to the security and flexibility of the Chilean National Electric System in a decarbonized, high-renewable penetration scenario.
Description
Keywords
Sistema eléctrico nacional (SEN), Inversores grid-forming, Estabilidad del sistema eléctrico, Energías renovables