Thesis Cuantificación de incertidumbre en energía de solvatación de moléculas debido a posición de átomos
Loading...
Date
2021-04
Authors
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Mecánica
Departament
Campus
Campus Casa Central Valparaíso
Abstract
Las ecuaciones de Poisson y Poisson Boltzmann permiten describir las interacciones electrostáticas de una molécula inserta en una solución iónica. A través del modelo de solvente implícito y el método de elementos de frontera es posible estimar parámetros de interés como la energía de solvatación o energía libre electrostática de una molécula al tener información de la posición y carga de los átomos del soluto. La posición de los átomos es representada empíricamente y tiene un grado de incertidumbre debido a la medición y las vibraciones moleculares que dan origen a propiedades térmicas.
Este trabajo tiene como fin cuantificar la incertidumbre generada por la posición de los átomos del soluto sobre la energía de solvatación de las moléculas. Para esto se implementaron varios modelos de generación aleatoria de posiciones de átomos (agitación) y se calcularon parámetros estadísticos usando el método Monte Carlo. Se reportan los resultados obtenidos por tres modelos de agitación: átomos se mueven aleatoriamente dentro de esferas de radio constante, según su conectividad y dentro de esferas de radio en función de su masa. Los datos muestran que esta metodología funciona para cuantificar incertidumbre y encontrar relaciones entre variables que pueden tener relación con los objetivos de este trabajo.
The Poisson and Poisson-Boltzmann equation allow us to describe electrostatic interactions of a molecule inserted in an ionic solution. Through the implicit solvent model and boundary element method it is possible to estimate parameters of interest such as the solvation energy or electrostatic free energy of a molecule by having information of the position and charge of the solute atoms. The position of these atoms is empirically represented and has a degree of uncertainty due to measurement and molecular vibrations that cause thermal properties. The purpose of this work is to quantify uncertainty generated by the position of the solute atoms in the solvation energy of molecules. For this, several models of random generation of atom positions (shake) were implemented and statistical parameters were calculated using the Monte Carlo method. The results obtained by three shake models are reported: atoms move randomly within spheres of constant radius, according their connectivity, and within spheres of radius according to their mass. The data show that this methodology works to quantify uncertainty and find relationships between variables that may be related to the objectives of this work.
The Poisson and Poisson-Boltzmann equation allow us to describe electrostatic interactions of a molecule inserted in an ionic solution. Through the implicit solvent model and boundary element method it is possible to estimate parameters of interest such as the solvation energy or electrostatic free energy of a molecule by having information of the position and charge of the solute atoms. The position of these atoms is empirically represented and has a degree of uncertainty due to measurement and molecular vibrations that cause thermal properties. The purpose of this work is to quantify uncertainty generated by the position of the solute atoms in the solvation energy of molecules. For this, several models of random generation of atom positions (shake) were implemented and statistical parameters were calculated using the Monte Carlo method. The results obtained by three shake models are reported: atoms move randomly within spheres of constant radius, according their connectivity, and within spheres of radius according to their mass. The data show that this methodology works to quantify uncertainty and find relationships between variables that may be related to the objectives of this work.
Description
Keywords
Energía libre electrostática, Modelos de generación aleatoria, Cuantificación de incertidumbre
