Thesis ANÁLISIS DEL ESCENARIO FUTURO DE OPERACIÓN DE UNA CENTRAL TERMOELÉCTRICA Y DESARROLLO DE ESTRATEGIAS PARA ENFRENTARLO
Loading...
Date
2018
Authors
Journal Title
Journal ISSN
Volume Title
Program
UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA UTFSM. DEPARTAMENTO DE INGENIERÍA MECÁNICA. MAGÍSTER EN ECONOMÍA ENERGÉTICA
Campus
Campus Vitacura, Santiago
Abstract
La alta penetración de Energías Renovables Variables (ERV), requiere que el
sistema eléctrico disponga de un alto grado de flexibilidad para gestionar esta
variabilidad. Así, las plantas termoeléctricas deberán desarrollar estrategias para
incrementar su flexibilidad permitiendo la entrada de las ERV que entregan
energía a bajo costo, sin emisiones de GEI pero con una alta variabilidad.
Bajo este escenario de transición, se analiza la situación de una central
termoeléctrica a carbón conectada al SEN en la zona central del país, desde el
punto de vista de la situación futura que deberá enfrentar debido al cambio en sus
condiciones de operación y a la exigencia de flexibilidad en su operación.
El objetivo es analizar el impacto técnico y económico que tendrá una determinada
central termoeléctrica producto del cambio en sus condiciones de operación
debido a la flexibilidad requerida por la entrada de las ERV. En paralelo se
pretenden elaborar estrategias para enfrentar este futuro escenario en forma
costo-efectiva. El desafío es adaptar estas centrales termoeléctricas a las nuevas
exigencias técnicas, no perdiendo nunca de vista un objetivo mayor que es seguir
siendo rentables en el tiempo.
La flexibilidad operacional se refiere a la medida en que las tecnologías de
generación de energía eléctrica pueden responder a la variabilidad en su carga de
salida en diferentes escalas de tiempo. Con una mayor participación de ERV,
estas plantas no sólo necesitan reaccionar de una manera más flexible sino
también necesitan hacerlo de manera rentable. La flexibilidad de las centrales
eléctricas convencionales se puede lograr mejorando y rediseñando componentes,
definiendo nuevas estrategias operativas e identificando nuevos mecanismos de
mercado. En este estudio se abordará la eficacia de reducir los mínimos técnicos
como una de las primeras medidas para enfrentar la futura operación en el
mediano y largo plazo para estas centrales. Mantener estas centrales en servicio
implica estar disponible para captar ingresos por inyección de energía durante
períodos de mayores CMg pero también para eventuales servicios de flexibilidad
como pueden ser las rampas de toma de carga. También se busca disminuir el
número de partidas y detenciones, buscando mantener las centrales en servicio.
Al respecto se plantean las siguientes soluciones y ajustes necesarios:
Estudiar el uso de carbones sub-bituminosos de bajo poder calorífico.
Utilizar un combustible liviano para ser quemado en la caldera junto al
combustible principal.
Ajustar los sistemas de suministro y control de aire primario y secundario a
la caldera.
Ajuste de los sistemas de desulfurización para operar con baja carga
térmica.
Ajustar y calibrar más precisamente todos los sistemas de detección de
llama.
Luego del análisis, la alternativa seleccionada como propuesta se basa en el uso
de carbones sub-bituminosos de bajo poder calorífico para permitir la operación en
bajas cargas.
Los beneficios por reducción del MT serían:
Permitir una mayor colocación de las ERV, disminuyendo el corte de sus
inyecciones al sistema. De esta manera se disminuye el costo de operación
global del sistema.
Disminuir las emisiones de CO2, material particulado, SOx y NOx.
Disminuir el cargo por operaciones a mínimos técnicos que se imputa a
consumidores finales según DS Nº130.
Considerando una operación de 335 días al año (30 días de mantenimiento) y
operación con patrón diario de 10 horas operando al nuevo mínimo técnico
propuesto de 50 MW se obtendría lo siguiente para cada central de 270 MW en
estudio:
Menores emisiones de CO2 por 200.000 toneladas anuales.
Menor costo de operación a mínimo técnico por US$ 11.7 millones anuales.
Mayor colocación de ERV por 235 GWh anuales.
Este cálculo se basa en un costo de operación de 50 US$/MWh y factor de
emisión de 0,85 tonCO2/MWh.
The high penetration of Variable Renewable Energy (VRE), requires that the electrical system has a high degree of flexibility to manage this variability. Thus, thermoelectric plants should develop strategies to increase their flexibility by allowing the entry of VRE that deliver energy at low cost, without GHG emissions but with high variability. Under this scenario of transition, the situation of a thermoelectric plant connected to the SEN in the central zone of the country is analyzed, from the point of view of the future situation that it will have to face due to the change in its operation conditions and the requirement of flexibility in your operation The objective is to analyze the technical and economic impact that a certain thermoelectric plant will have as a result of the change in its operating conditions due to the flexibility required by the entry of the ERV. At the same time, the aim is to develop strategies to face this future scenario in a cost-effective manner. The challenge is to adapt these thermoelectric plants to the new technical requirements mentioned above, never losing sight of a greater objective that is to remain profitable over time. Operational flexibility refers to the extent to which electric power generation technologies can respond to the variability in their output load at different time scales. With a greater participation of ERV, these plants not only need to react in a more flexible way but also need to do it in a profitable way. The flexibility of conventional power plants can be achieved by improving and redesigning components, defining new operational strategies and identifying new market mechanisms. This study will address the effectiveness of reducing minimum load as one of the first measures to face the future operation in the medium and long term for these plants. Keeping these plants in service means being available to capture energy injection income during periods of higher CMg but also for possible flexibility services such as loading ramps. It also decreases the number of departures and detentions, keeping the plants in service. In this regard, the following solutions and necessary adjustments are proposed: • Study the use of sub-bituminous carbons of low calorific value. • Use a light fuel to be burned in the boiler next to the main fuel. • Adjust the primary and secondary air supply and control systems to the boiler. • Adjustment of desulfurization systems to operate with low thermal load. • Adjust and calibrate more precisely all flame detection systems. After the analysis, the alternative selected as a proposal is based on the use of sub-bituminous coals of low calorific power to allow operation at low loads. The benefits for reduction of minimum load would be: • It allows a greater placement of the ERV, reducing the cut of its injections to the system. In this way, the overall operating cost of the system is reduced. • Reduction of CO2, PM, SOx and NOx emissions. • Reduction of the charge for operations to technical minimums that is charged to final consumers according to DS Nº130. Considering an operation of 335 days a year (30 days of maintenance) and operation with daily pattern of 10 hours operating at the proposed new technical minimum of 50 MW, the following would be obtained for each plant of 270 MW under study: • Lower CO2 emissions by 200,000 tons per year. • Lower operating cost to technical minimum for US $ 11.7 million per year. • Greater ERV injections for 235 GWh per year. Calculation is based on a generation cost of US$ 50/MWh and an emission factor of 0.85 tonCO2/MWh.
The high penetration of Variable Renewable Energy (VRE), requires that the electrical system has a high degree of flexibility to manage this variability. Thus, thermoelectric plants should develop strategies to increase their flexibility by allowing the entry of VRE that deliver energy at low cost, without GHG emissions but with high variability. Under this scenario of transition, the situation of a thermoelectric plant connected to the SEN in the central zone of the country is analyzed, from the point of view of the future situation that it will have to face due to the change in its operation conditions and the requirement of flexibility in your operation The objective is to analyze the technical and economic impact that a certain thermoelectric plant will have as a result of the change in its operating conditions due to the flexibility required by the entry of the ERV. At the same time, the aim is to develop strategies to face this future scenario in a cost-effective manner. The challenge is to adapt these thermoelectric plants to the new technical requirements mentioned above, never losing sight of a greater objective that is to remain profitable over time. Operational flexibility refers to the extent to which electric power generation technologies can respond to the variability in their output load at different time scales. With a greater participation of ERV, these plants not only need to react in a more flexible way but also need to do it in a profitable way. The flexibility of conventional power plants can be achieved by improving and redesigning components, defining new operational strategies and identifying new market mechanisms. This study will address the effectiveness of reducing minimum load as one of the first measures to face the future operation in the medium and long term for these plants. Keeping these plants in service means being available to capture energy injection income during periods of higher CMg but also for possible flexibility services such as loading ramps. It also decreases the number of departures and detentions, keeping the plants in service. In this regard, the following solutions and necessary adjustments are proposed: • Study the use of sub-bituminous carbons of low calorific value. • Use a light fuel to be burned in the boiler next to the main fuel. • Adjust the primary and secondary air supply and control systems to the boiler. • Adjustment of desulfurization systems to operate with low thermal load. • Adjust and calibrate more precisely all flame detection systems. After the analysis, the alternative selected as a proposal is based on the use of sub-bituminous coals of low calorific power to allow operation at low loads. The benefits for reduction of minimum load would be: • It allows a greater placement of the ERV, reducing the cut of its injections to the system. In this way, the overall operating cost of the system is reduced. • Reduction of CO2, PM, SOx and NOx emissions. • Reduction of the charge for operations to technical minimums that is charged to final consumers according to DS Nº130. Considering an operation of 335 days a year (30 days of maintenance) and operation with daily pattern of 10 hours operating at the proposed new technical minimum of 50 MW, the following would be obtained for each plant of 270 MW under study: • Lower CO2 emissions by 200,000 tons per year. • Lower operating cost to technical minimum for US $ 11.7 million per year. • Greater ERV injections for 235 GWh per year. Calculation is based on a generation cost of US$ 50/MWh and an emission factor of 0.85 tonCO2/MWh.
Description
Keywords
ENERGIAS RENOVABLES, CENTRAL TERMOELECTRICA, EQUILIBRIO FINANCIERO