Thesis DECENTRALIZED CONTROL OF MICROGRIDS
Loading...
Date
2018
Authors
Journal Title
Journal ISSN
Volume Title
Program
Campus
Universidad Técnica Federico Santa María UTFSM. Casa Central Valparaíso
Abstract
La operación convencional de redes eléctricas esta cambiando debido a la creciente incorporación de recursos energéticos distribuidos (DERs) en redes de distribución, mayoritariamente generación renovable y almacenamiento en baterias mediante el uso de convertidores electrónicosde potencia. Bajo este nuevo escenario, las redes eléctricas de distribución estan requiriendo operarcomo entidades con propiedades emergente, auto-organizadas, este nuevo paradigma en redes de distribución es conocido como microredes. Las microredes deben ser capaces de conectar o desconectara una red principal o entre ellas, abastecer la demanda energética del usuario final, y proveer unacalidad de potencia adecuada, incrementando la eficiencia y confiabilidad del suministro eléctrico.Estos requerimientos deben ser logrados sin v´inculos de comunicaci´on, lo cual podr´ia comprometerla confiabilidad y resiliencia de la microred. La mayoría de los recursos energéticos a nivel de distribución se encuentran integrados con dispositivos basados en electrónica de potencia, permitiendoproveer alg´un grado de actuaci´on, y as´i de decisi´on e inteligencia decentralizada. Tales microredespueden ser considerados como sistemas multi agentes, donde los algoritmos de control que comandanel comportamiento de cada unidad DER, son responsables de satisfacer colectivamente todoslos requerimientos operacionales de la microred. Para este f´in, esta tesis propone un modelo deinteracci´on entre la unidad DER y la microred, una estrategia de control y un procedimiento dediseño para estas unidades, las cuales podr´ian operar en regimen de estado estacionario y transientepara lograr un desempe˜no deseado. En particular, este trabajo esta interesado en la respuesta dela microred ante un incidente, la inesperada conexi´on o desconexi´on entre la microred y la redprincipal. Estos modos de operaci´on, isla y conectado a red, tienen objetivos decontrol opuestos en estado estacionario. En modo isla las unidades DER regulan la amplitud y la frecuencia de latensi´on de la microred, mientras que en modo conectado a red las unidades DER deben seguir unareferencia de potencia. Adem´as, la transici´on din´amica entre tales objetivos de control es tambi´ende inter´es, la estabilidad transitoria de la microred podr´ia ser comprometida durante tal eventosi el control no es conceptualizado para operar de manera apropiada durante esta perturbaci´on.Consecuentemente, esta tesis tiene como objetivo elaborar una ley de control unificada, que cumplacon regulaci´on de amplitud y frecuencia de la tensi´on de la microred en modo de operaci´on isla, yque adem´as otorge seguimiento de corriente en modo de operaci´on conectada. Como los objetivosde control dependen del modo de operaci´on, una adecuada saturaci´on en la variable de entradaes propuesta. Tal satuaci´on de la ley de control debe preservar el efecto de realimentaci´on enla microred y evitar discontinuidades en el lazo cerrado de control, otorgando estabilidad y unatransici´on suave bajo cambios en el modo de operaci´on, y bajo otras posibles perturbaciones.La propuesta para el diseño del lazo cerrado esta basada en las soluciones a los problemasde estimaci´on y regulaci´on lineal cuadr´atico, otorgando una trayectoria temporal ´optima del vectorde variables de estado. Tal dise˜no puede ser interpretado y usado en el dominio de la frecuenciapara proveer informaci´on a cerca de la respuesta en frecuencia del lazo cerrado. Adicionalmente,la regulaci´on de amplitud y frecuencia de la tensi´on es tambi´en considerada en el procedimientode dise˜no. Vinculando de manera efectiva la teor´ia de control lineal ´optima con los esquemasbasados en droop proveniente desde el control cl´asico de los sistemas de potencia en aplicaciones amicroredes.La efectividad de la estrategia de control y dise˜no es demostrada a trav´es de estudios basadosen simulaciones en el dominio del tiempo en el software PSCAD/EMTDC. As´i tambi´en, la ley decontrol propuesta es implementada en un prototipo experimental de 5 kW con una unidad DER.Ambos resultados, basados en simulaciones y experimentos, confirman la principal hipotesis deeste trabajo, especificamente que existe una ley de control que es capaz de estabilizar la microredbajo cualquier regimen de operaci´on. La consecuencia de este trabajo es inmediata, las unidadesDER pueden ser controladas para operar directamente conectadas a una red de distribuci´on en ambos modos de operaci´on, incluyendo transiciones, incrementando la resiliencia y confiabilidad dela microred.
The paradigm of classical power networks is changing thanks to the trend of connectingdistributed energy resources (DERs) in distribution networks, mostly renewable and battery storageusing power electronic converters. In this new scenario, the electric power distribution network isrequired to operate as a collection of entities with emergent properties, self-organized, this newdistribution network paradigm is known as microgrids. Microgrids must be able to connect or todisconnect from the main grid or other microgrids, to supply the final user energy demand and toprovide suitable power quality, increasing the efficiency and reliability of supply. These requirementsshould be satisfied without a communication link, as this may compromises the reliability andresilience of the microgrid. Most of the distributed energy resources (DER) units at distributionlevel are integrated with power electronic devices, allowing to provide some degree of actuation andhence decentralized decision and intelligence. Such system can be regarded as multi-agent systemswhere the control algorithms that command the behaviour of each DER unit are responsible forcollectively meeting all the operation requirements of the microgrid. To this end, this thesis proposesa novel DER-microgrid interaction model, a control strategy and corresponding design procedure forDER units operating in a microgrid, for its control in steady-state as well as in transient regime toachieves a desirable performance. In particular, this work is interested in the response to one mainincident, the sudden connection or disconnection between the microgrid and the main grid. Thesemodes of operation, islanded and grid-connected, have opposites steady-state control objectives. Inislanded mode the DER units regulates the voltage amplitude and frequency of the microgrid, whilein grid-connected mode the DER units should follow a power reference. The dynamic transition between such control objectives is also of interest of this thesis, as the transient stability of themicrogrid might be jeopardized during such incident if the control is not conceptualized to properlyhandle this disturbance. Consequently, this thesis aims for a unified control law that satisfiesthe voltage amplitude and frequency regulation of the DER units in islanded mode and providescurrent reference tracking in grid-connected mode. As the control objective depends on the mode ofoperation, a suitable saturation of the input variable is proposed. Such saturated control law mustpreserves the effect of the feedback on the microgrid and avoid discontinuities in the closed-loop,providing stability and smooth transition under changes of mode of operation and under otherpossible large disturbances.The proposed closed-loop design is based on the solution of the linear-quadratic estimationand regulation problems, providing an optimal time-trajectory of the state variables. Such designcan be interpreted in the frequency-domain to provides information about the closed-loop frequencyresponse. Additionally, the steady-state voltage amplitude and frequency regulation is also consideredon the design procedure, effectively linking the well stablished linear optimal control theorywith the droop schemes adapted from classical power system control to microgrid applications.The effectiveness of the proposed control strategy and design is demonstrated through timedomainsimulation studies conducted in the PSCAD/EMTDC software environment. Also, theproposed control law is implemented in an experimental prototype of 5 kW with a single DER unit.Both results, simulation and experimental, confirm the main hypothesis of this work, namely thata unified control law that is able to stabilize the system under any regime of operation exists. Theconsequences of this work is immediate, the DER units can be controlled to operate directly connectedto a distribution network, either in islanded or grid-connected mode of operation, properlyhandling the transitions, increasing the resilience and reliability of microgrids.
The paradigm of classical power networks is changing thanks to the trend of connectingdistributed energy resources (DERs) in distribution networks, mostly renewable and battery storageusing power electronic converters. In this new scenario, the electric power distribution network isrequired to operate as a collection of entities with emergent properties, self-organized, this newdistribution network paradigm is known as microgrids. Microgrids must be able to connect or todisconnect from the main grid or other microgrids, to supply the final user energy demand and toprovide suitable power quality, increasing the efficiency and reliability of supply. These requirementsshould be satisfied without a communication link, as this may compromises the reliability andresilience of the microgrid. Most of the distributed energy resources (DER) units at distributionlevel are integrated with power electronic devices, allowing to provide some degree of actuation andhence decentralized decision and intelligence. Such system can be regarded as multi-agent systemswhere the control algorithms that command the behaviour of each DER unit are responsible forcollectively meeting all the operation requirements of the microgrid. To this end, this thesis proposesa novel DER-microgrid interaction model, a control strategy and corresponding design procedure forDER units operating in a microgrid, for its control in steady-state as well as in transient regime toachieves a desirable performance. In particular, this work is interested in the response to one mainincident, the sudden connection or disconnection between the microgrid and the main grid. Thesemodes of operation, islanded and grid-connected, have opposites steady-state control objectives. Inislanded mode the DER units regulates the voltage amplitude and frequency of the microgrid, whilein grid-connected mode the DER units should follow a power reference. The dynamic transition between such control objectives is also of interest of this thesis, as the transient stability of themicrogrid might be jeopardized during such incident if the control is not conceptualized to properlyhandle this disturbance. Consequently, this thesis aims for a unified control law that satisfiesthe voltage amplitude and frequency regulation of the DER units in islanded mode and providescurrent reference tracking in grid-connected mode. As the control objective depends on the mode ofoperation, a suitable saturation of the input variable is proposed. Such saturated control law mustpreserves the effect of the feedback on the microgrid and avoid discontinuities in the closed-loop,providing stability and smooth transition under changes of mode of operation and under otherpossible large disturbances.The proposed closed-loop design is based on the solution of the linear-quadratic estimationand regulation problems, providing an optimal time-trajectory of the state variables. Such designcan be interpreted in the frequency-domain to provides information about the closed-loop frequencyresponse. Additionally, the steady-state voltage amplitude and frequency regulation is also consideredon the design procedure, effectively linking the well stablished linear optimal control theorywith the droop schemes adapted from classical power system control to microgrid applications.The effectiveness of the proposed control strategy and design is demonstrated through timedomainsimulation studies conducted in the PSCAD/EMTDC software environment. Also, theproposed control law is implemented in an experimental prototype of 5 kW with a single DER unit.Both results, simulation and experimental, confirm the main hypothesis of this work, namely thata unified control law that is able to stabilize the system under any regime of operation exists. Theconsequences of this work is immediate, the DER units can be controlled to operate directly connectedto a distribution network, either in islanded or grid-connected mode of operation, properlyhandling the transitions, increasing the resilience and reliability of microgrids.
Description
Catalogado desde la version PDF de la tesis.
Keywords
DECENTRALIZED CONTROL, LQG, MICROGRID