Thesis CARACTERIZACIÓN NUMÉRICA DE LAS PROPIEDADES MECÁNICAS DE MUESTRAS DE TEJIDO ÓSEO IMPRESAS POR MANUFACTURA ADITIVA A PARTIR DE IMÁGENES DE MICRO-TOMOGRAFÍA COMPUTACIONAL
Loading...
Date
2018
Authors
Journal Title
Journal ISSN
Volume Title
Program
INGENIERÍA MECÁNICA INDUSTRIAL
Campus
Casa Central Valparaíso
Abstract
En este trabajo de título se estudia numéricamente, mediante el Método de Elementos
Finitos, el comportamiento mecánico de modelos de hueso trabecular, generados
a partir de micro-tomografías computarizadas, las que son obtenidas como
resultado de un experimento biológico en condiciones ex-vivo. Con el desarrollo
de este trabajo se busca establecer un modelo biomecánico cuya función principal
es generar una herramienta costo/e ciente para predecir el comportamiento
mecánico del tejido oseo a partir de métodos no invasivos.
El método utilizado en este estudio consiste en simular ensayos de compresión a
los modelos de probetas de tejido trabecular, obtenidas del experimento biológico,
mediante el método de elementos nitos con el software comercial ANSYSr
Workbench. En el desarrollo de la simulación con elementos nitos se utilizan
condiciones de borde apropiadas para que los resultados sean representativos del
problema físico. Como resultado se obtienen la deformación y fuerzas de reacción
asociadas a cada modelo, con las cuales se calcula los módulos de Young aparentes.
Los modelos generados a partir de las micro-tomografías computacionales son
impresos mediante manufactura aditiva de tipo modelado por aporte fundido,
para ser evaluados mediante ensayos mecánicos de compresión, en un equipo de
ensayos universal TestResourcesr. Se calcula el módulo de Young aparente de los
modelos impresos, los cuales se comparan con los obtenidos mediante el análisis
por elementos nitos.
Los resultados obtenidos por ambas metodologías presentan una correlación a la
curva teórica superior al 95 %, pero con órdenes de magnitud diferente, lo cual
se atribuye a la simpli cación realizada en la simulación con elementos nitos.
Luego de aplicar un factor de corrección a los resultados obtenidos del an alisis con
elementos nitos. Se concluye que esta fórmula entrega buenas aproximaciones
al módulo de Young simulado con un material isotrópico respecto al calculado
mediante un ensayo de compresión, para modelos fabricados por modelado con
aporte fundido a una determinada con guración de impresión.
In this work the mechanical behavior of trabecular bone models, generated from computerized micro-tomography, which are obtained as a result of a biological experiment under conditions ex-vivo is studied numerically, using the Finite Element Method. With the development of this work we seek to establish a biomechanical model whose main function is to generate a efficient tool to predict the mechanical behavior of bone tissue from non-invasive methods. The method used in this study consists of simulating compression tests on trabecular tissue models, obtained from the biological experiment, using the nite element method with the commercial software ANSYSr Workbench. In the development of nite element simulation, appropriate border conditions are used so that the results are representative of the physical problem. As a result, the deformation and reaction forces associated with each model are obtained, with which the apparent Young modules are calculated. The models generated from the computational micro-tomographies are printed by additive manufacturing of uid deposition modelling type, to be evaluated by means of mechanical compression tests, in a universal testing equipment Test Resourcesr. The apparent Young's modulus of the printed models is calculated, which are compared with those obtained by the nite element analysis. The results obtained by both methodologies show an theorical curve correlation higher than 95 %, but with orders of di erent magnitude, which can be attributed to the simpli cation made in the simulation with nite elements. After applying a correction factor to the results obtained from the analysis with nite elements. It is concluded that this formula gives good approximations to the simulated Young module with an isotropic material with respect to the module calculated by means of a compression test in an electromechanical equipment, for models manufactured by fused deposition modelling for a certain printing con guration.
In this work the mechanical behavior of trabecular bone models, generated from computerized micro-tomography, which are obtained as a result of a biological experiment under conditions ex-vivo is studied numerically, using the Finite Element Method. With the development of this work we seek to establish a biomechanical model whose main function is to generate a efficient tool to predict the mechanical behavior of bone tissue from non-invasive methods. The method used in this study consists of simulating compression tests on trabecular tissue models, obtained from the biological experiment, using the nite element method with the commercial software ANSYSr Workbench. In the development of nite element simulation, appropriate border conditions are used so that the results are representative of the physical problem. As a result, the deformation and reaction forces associated with each model are obtained, with which the apparent Young modules are calculated. The models generated from the computational micro-tomographies are printed by additive manufacturing of uid deposition modelling type, to be evaluated by means of mechanical compression tests, in a universal testing equipment Test Resourcesr. The apparent Young's modulus of the printed models is calculated, which are compared with those obtained by the nite element analysis. The results obtained by both methodologies show an theorical curve correlation higher than 95 %, but with orders of di erent magnitude, which can be attributed to the simpli cation made in the simulation with nite elements. After applying a correction factor to the results obtained from the analysis with nite elements. It is concluded that this formula gives good approximations to the simulated Young module with an isotropic material with respect to the module calculated by means of a compression test in an electromechanical equipment, for models manufactured by fused deposition modelling for a certain printing con guration.
Description
Keywords
CARACTERIZACION NUMERICA, TEJIDO OSEO, MANUFACTURA ADITIVA, MICRO-TOMOGRAFIA COMPUTACIONAL