EL REPOSITORIO SE ENCUENTRA EN MARCHA BLANCA

 

Thesis
EL HIDRÓGENO COMO FUENTE DE ENERGÍA, ESTUDIO PARA LA IMPLEMENTACIÓN DE SISTEMA DE SUMINISTRO PARA EQUIPOS MÓVILES; GRÚAS HORQUILLA

Loading...
Thumbnail Image

Date

2015-08

Journal Title

Journal ISSN

Volume Title

Program

DEPARTAMENTO DE INGENIERÍA MECÁNICA. MAGÍSTER EN ECONOMÍA ENERGÉTICA

Campus

Campus Vitacura, Santiago

Abstract

Pese a que los automóviles eléctricos con celdas de combustible se encuentran en etapas previas a la comercialización, las celdas de combustible se han abierto paso en nuevos mercados o “early markets”, tales como las grúas horquilla y módulos de apoyo para reserva de energía. Estos desarrollos están permitiendo ampliar el conocimiento de las celdas de combustible y el hidrógeno como fuente de energía, así como también ampliar su mercado potencial. Las celdas de combustible se ven en la actualidad como una alternativa prometedora, debido a las limitaciones que posee la operación de baterías eléctricas en los almacenes; carga y sustitución de la batería, vida útil, disposición final y espacio para almacenamiento. La celda de combustible puede funcionar hasta 12 horas continuas sin la necesidad de una recarga y sin sufrir perdidas de rendimiento. Además, puede ser recargada en sólo minutos. Existen países como EE.UU. y otros pertenecientes a unión Europea, que han participado en planes de incentivo para implementar ésta tecnología a cambio de obtener información acerca de su comportamiento. Han ayudado a financiar almacenes (bodegas) de privados para éste recambio tecnológico, además de disponer con beneficios tributarios. Con esto, han estado evaluando el rendimiento de las pilas de combustible en la aplicación de grúas horquilla en particular. Chile ya cuenta con un acotado desarrollo de la industria del hidrógeno, no abarcando específicamente la aplicación como fuente de energía en celdas de combustible. Pero existe una cadena productiva, logística e ingeniería en el país debido a la presencia de grandes empresas multinacionales que proveen de éste producto. A nivel normativo, existe una gran brecha con los países que han desarrollado este “early market”. Es posible distinguir que no existen normas que rijan técnicamente las instalaciones de hidrógeno y que sólo existen unas pocas, que tratan más bien el hidrógeno como un insumo industrial, de consumo acotado (por ejemplo el DS78). Para el caso propuesto en estudio; un almacén que tiene cerca de 60 grúas horquilla, que utilizan 18 Ton/año de hidrógeno, se plantearon 2 opciones de abastecimiento de hidrógeno. Electrolizador y reformador de metano, ambas tecnologías presentan formatos de operación que son posibles de habilitar en forma aislada, sin requerir de grandes trabajos para su puesta en marcha. La base del estudio fue obtenida de publicaciones del Laboratorio Nacional de Energías Renovables de EE.UU. (NREL). El cual deja en evidencia que la incorporación del hidrógeno y celdas de combustible dentro de la estructura de costos anuales para un almacén, contribuye a una reducción global del 10% frente al costo de operar con grúas eléctricas. No obstante, se percibe un aumento en la importancia del insumo energético (electricidad – hidrógeno), desde un 3% a un 13%, considerando un precio de hidrógeno de 8 $UD/kg. Para el caso de Chile y solamente variando el costo de producción entre ambas tecnologías (reformador – gas, electrolizador – energía eléctrica), se obtuvieron costos de desarrollo de 3,96 $USD/Kg H2 para un reformador y 10,05 $USD/kg H2 para un electrolizador. Sin embargo, estos dos costos no consideran manipulación posterior del producto (compresión, almacenamiento y logística - CSD). De todas formas, se puede apreciar que existe un mayor potencial económico al desarrollar el hidrógeno desde un reformador a gas natural, debido a que los costos se alejan menos que un electrolizador. Teniendo como base el año 2012 en EE.UU. donde el costo de hidrógeno 1,74 $USD/kg sin CSD. Acorde a la opinión de expertos, que han participado en planes de desarrollo de ésta tecnología. Existe un camino por recorrer y resolver temas relacionados al almacenamiento y transporte del hidrógeno, eficiencia en la celdas de combustible y el fomento de la producción limpia y sustentable del hidrógeno. Sin embargo, mantienen que se desarrollará un nuevo mercado, que contempla un “mix” energético que incorporará al hidrógeno como parte de su matriz debido a las ventajas que presenta, como buffer para otras fuentes tal como la eólica y la solar.
Although fuel cell electric vehicles are still under development and previous steps before commercialization, fuel cells and hydrogen are being used commercially in early market such as forklifts (material handling equipment) and backup power. These developments are helping to improve hydrogen and fuel cells technologies and expanding their market potential. Fuel cell systems look particularly promising as replacement for batteries in forklifts for warehouse applications because of batteries drawbacks: charge and replacement, battery life, final disposal and storage space. Fuel cell can operate for more than twelve hours continuously without performance degradation, and can be fueled in minutes. Some countries like USA and other members of the European community have been developing plans in order to promote this technology and gather data about its performance. To foster that change, they finance warehouses and also created a federal tax credit for fuel cell purchase. These initiatives are helping to a better understanding of the real performance in fuel cell and hydrogen, particularly in forklift application. The development of hydrogen in Chilean industries remains limited, and moreover not as an energy vector in fuel cells. However, supply chain and engineering are already implemented in the country thanks to the presence of big multinational companies that provide and use this product. There is a gap in regulations between Chile and the other countries that already developed this “early market”. There are no technical regulations for installations and only a few ones for hydrogen, but only in industrial applications (eg. DS 78). For the proposed study, will be considered one warehouse with 60 forklifts consuming 18 Ton/year of hydrogen and two options for hydrogen supply and/or production: electrolyzer and SMR. Those technologies allow operational conditions able to work isolated and easy to start up. The studied case was obtained from publications in the National Renewable Energy Laboratory (NREL) in USA. Those documents prove that the application of hydrogen and fuel cell significantly contributes to decrease the annual forklifts operational cost by 10%, compared to batteries. Nevertheless, it is responsible for a considerable increase in energy cost (electricity-hydrogen), from 3% up to 13% (considering hydrogen cost of 8 $USD/Kg). Focusing the evaluation on Chile and studying the variation of the production cost for hydrogen (SMR-gas, electrolyzer-electricity), the results obtained to produce hydrogen were 3,96 $USD/Kg H2 from SMR and 10,05 $USD/kg H2 from an electrolyzer. It should be noted that this costs do not include handling and logistics. Anyway, there is a relevant gap between the production cost for both technologies, being more competitive the SMR and particularly for this application. Indeed, the hydrogen cost considered in NREL studies is about 1,74 $USD/kg without handling and logistics. Finally, according to experts in the hydrogen energy field, there is still a long way to develop hydrogen as an energy vector, because matter related with storage and transport for energy and also efficiency in fuel cells need to be solved. Moreover, it will be necessary to promote clean fuels to produce sustainable hydrogen. For the incoming years, they predict a new market that consists in a “mix” including renewables and, of course, hydrogen as a buffer for other technologies, like wind and solar.

Description

Keywords

HIDRÓGENO, EARLY MARKET, FORKLIFT

Citation