Thesis SIMULACIÓN MATEMÁTICA DE LA EXTRACCIÓN DE ACEITE DE MICROALGA CON CO2 SUPERCRÍTICO: EFECTO DEL EQUILIBRIO DE PARTICIÓN
Loading...
Date
2021-12
Journal Title
Journal ISSN
Volume Title
Program
DEPARTAMENTO DE INGENIERÍA QUÍMICA Y AMBIENTAL. INGENIERÍA CIVIL QUÍMICA
Campus
Campus San Joaquín, Santiago
Abstract
La utilización de lípidos de microalga como materia prima para producir biodiesel ha sido un foco de investigación prometedora en los sectores académicos e industriales durante los últimos años por su alto contenido lipídico, que oscila entre el 20-50% en peso. Una alternativa para la extracción de lípidos de microalga es el uso de fluidos supercríticos como solvente en la operación, donde el CO2 supercrítico es el solvente más utilizado. Para poder desarrollar este tipo de procesos, la simulación es una herramienta necesaria para predecir el comportamiento del proceso de extracción de lípidos de microalga con CO2 supercrítico bajo distintas condiciones de operación. Estas simulaciones requieren modelos matemáticos capaces de describir la transferencia de materia dentro del lecho empacado y representar adecuadamente el equilibrio de partición del soluto. El objetivo principal de este trabajo fue estudiar la extracción de lípidos de microalga con CO2 supercrítico mediante la simulación del proceso considerando un modelo matemático que incluya el equilibrio de partición del soluto. Para llevar a cabo la simulación se emplearon datos reportados en bibliografía; en estos experimentos se usó como sustrato la microalga Nannochloropsis oculata que se extrajo usando CO2, a 50 °C y 75 MPa. La simulación se realizó aplicando el modelo Linear Driving Force (LDF) y considerando como parámetro de ajuste el factor microestructural (Fm). Las curvas de rendimiento acumulado se construyeron como resultado de la simulación del proceso considerando tres tipos de isotermas de equilibrio de partición; una isoterma lineal con un Fm de 179 y un ajuste del 99,3% a los datos experimentales, una isoterma pseudo Sips con un Fm de 9,4 y un ajuste del 92,1%, y una isoterma dVU (del Valle & Urrego) con un Fm de 9,4 y un ajuste del 81,6%. Se concluye que la isoterma lineal es la relación que mejor representa el equilibrio, lo que se debe a una baja disponibilidad de lípidos para la extracción, ya que el soluto se encuentra muy ligado al sustrato por la rigidez de la pared celular y la inefectividad en el pretratamiento. Aun así, el modelo LDF puede no ser el más adecuado para representar este tipo de procesos controlados por la transferencia de masa interna, por lo que se recomienda estudiar otros modelos matemáticos que incluyan este mecanismo.
The use of microalgae lipids as raw material to produce biodiesel has been a promising research focus in the academic and industrial sectors in recent years due to its high lipid content, which ranges between 20-50% by weight. An alternative for the extraction of lipids from microalgae is the use of supercritical fluids as solvent in the operation, where CO2 is the most used solvent. To develop this type of process, simulation is a necessary tool to predict the behavior of the microalgae lipid extraction process with supercritical CO2 under different operating conditions. These simulations require mathematical models capable of describing the transfer of matter within the packed bed and adequately representing the partition equilibrium of the solute. The main objective of this work was to study the extraction of lipids from microalgae with supercritical CO2 by simulating the process considering a mathematical model that includes the solute partition equilibrium. To carry out the simulation, data reported in the bibliography were used; the microalgae Nannochloropsis oculata as substrate, which was extracted using CO2, at 50 °C and 75 MPa. The simulation was carried out by applying the Linear Driving Force (LDF) model and considering the microstructural factor (Fm) as an adjustment parameter. The cumulative yield curves were constructed as a result of the simulation of the process considering three types of partition equilibrium isotherms: a linear isotherm with an Fm of 179 and a 99.3% fit to the experimental data, a pseudo Sips isotherm with an Fm of 9.4 and a 92.1% fit, and a dVU isotherm (del Valle & Urrego) with an Fm of 9.4 and a setting of 81.6%. In conclusion, the linear isotherm is the relationship that best represents the equilibrium, because of a low availability of lipids for extraction as the solute is highly bound to the substrate due to the rigidity of the cell wall and ineffectiveness in pretreatment. Even so, the LDF model may not be the most appropriate to represent a process controlled by internal mass transfer, so it is recommended to study other mathematical models that include this mechanism.
The use of microalgae lipids as raw material to produce biodiesel has been a promising research focus in the academic and industrial sectors in recent years due to its high lipid content, which ranges between 20-50% by weight. An alternative for the extraction of lipids from microalgae is the use of supercritical fluids as solvent in the operation, where CO2 is the most used solvent. To develop this type of process, simulation is a necessary tool to predict the behavior of the microalgae lipid extraction process with supercritical CO2 under different operating conditions. These simulations require mathematical models capable of describing the transfer of matter within the packed bed and adequately representing the partition equilibrium of the solute. The main objective of this work was to study the extraction of lipids from microalgae with supercritical CO2 by simulating the process considering a mathematical model that includes the solute partition equilibrium. To carry out the simulation, data reported in the bibliography were used; the microalgae Nannochloropsis oculata as substrate, which was extracted using CO2, at 50 °C and 75 MPa. The simulation was carried out by applying the Linear Driving Force (LDF) model and considering the microstructural factor (Fm) as an adjustment parameter. The cumulative yield curves were constructed as a result of the simulation of the process considering three types of partition equilibrium isotherms: a linear isotherm with an Fm of 179 and a 99.3% fit to the experimental data, a pseudo Sips isotherm with an Fm of 9.4 and a 92.1% fit, and a dVU isotherm (del Valle & Urrego) with an Fm of 9.4 and a setting of 81.6%. In conclusion, the linear isotherm is the relationship that best represents the equilibrium, because of a low availability of lipids for extraction as the solute is highly bound to the substrate due to the rigidity of the cell wall and ineffectiveness in pretreatment. Even so, the LDF model may not be the most appropriate to represent a process controlled by internal mass transfer, so it is recommended to study other mathematical models that include this mechanism.
Description
Keywords
COMBUSTIBLE BIODIESEL, LIPIDOS, MATERIAS PRIMAS