Thesis Modelación computacional del proceso de difusión en materiales elastómeros aplicados en transmisión de hidrógeno
Loading...
Date
2025-01-03
Authors
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Química
Campus
Campus Casa Central Valparaíso
Abstract
Durante los últimos años, el hidrógeno se ha vuelto un elemento prometedor desde el punto de vista energético, además de desafiante, debido a su alta inflamabilidad y difusividad en materiales. Es por ello que se busca estudiar los procesos de difusión en materiales que interactúan con este, de manera de dar confiabilidad a la transición energética.
Por consiguiente, se realizó la modelación computacional de la difusión del hidrógeno mediante COMSOL Multiphysics, con el fin de estudiar su comportamiento ante variaciones de presión, temperatura, material y dimensiones. Particularmente se analizaron los elastómeros Etileno Propileno Dieno (EPDM), Caucho Nitrilo Butadieno (NBR) y Fluoroelastómero Viton A (FKM), los cuales son utilizados principalmente en la confección de sellos y recubrimientos de válvulas o tuberías.
En primer lugar, se realizaron simulaciones de muestras de FKM esférico de 10 mm de diámetro a diferentes temperaturas (20 – 45 °C) y presiones (1 – 10 MPa) con el objetivo de analizar su efecto en variables de interés, como el coeficiente de difusión. Este se obtiene a través de regresiones no lineales en MATLAB, utilizando la expresión teórica de sorción con los datos entregados por COMSOL.
Al incrementar la temperatura en 25 grados Celsius se observó un aumento de permeabilidad del 338%, de difusividad del 247%, y de masa (mol) total difundida del 1.5%. En el caso de variación de presión, al incrementarla en 9 MPa se aprecia un aumento de masa total difundida del 900%.
Por otro lado, se analizaron los efectos del tipo de material y diámetro, obteniendo difusividades y permeabilidades constantes a medida que cambian las dimensiones, y valores diferentes según el material, siendo en ambas variables EPDM el valor más alto, seguido de FKM y finalmente NBR.
Finalmente, se estudiaron los efectos de simular múltiples esferas en simultáneo, demostrando la misma masa total difundida para todas las muestras.
In the last years, hydrogen has become a promising factor in terms of energy, but also challenging to handle due to its high flammability and diffusivity in materials. To provide reliability to the energy transition, we seek to study the diffusion in materials that interact with hydrogen. This thesis considers the computational modeling of hydrogen diffusion using COMSOL Multiphysics, in order to study its behavior in variation of pressure, temperature, material and dimensions. The elastomers that were analyzed are Ethylene propylene diene (EPDM), Nitrile butadiene rubber (NBR), and fluoroelastomer Viton A (FKM), which are used in the confection of seals and coatings of valves and pipes. First, simulations of spherical 10 mm diameter FKM samples were conducted at different temperatures (20 – 45 °C) and pressures (1 – 10 MPa), with the aim of analyzing its effect in the interest variables, such as the diffusion coefficient. This analysis was conducted via non-linear regressions in MATLAB, using the theoretical expression of sorption and the COMSOL data. Under these experimental conditions, an increase in permeability of 338%, diffusivity of 247% and total diffused mass (mol) of 1.5% was observed when increasing the temperature in 25 Celsius degrees. In the case of pressure variation, an increase of 900% is seen in the total diffused mass when the pressure is increased by 9 MPa. Secondly, the effects of material and diameter were analyzed, obtaining constant diffusivities and permeabilities as dimensions change, and different values depending on the material, being in both variables EPDM the highest value, followed by FKM, and finally NBR. Lastly, the effects of various spheres were studied, showing the same total diffused mass in the spheres.
In the last years, hydrogen has become a promising factor in terms of energy, but also challenging to handle due to its high flammability and diffusivity in materials. To provide reliability to the energy transition, we seek to study the diffusion in materials that interact with hydrogen. This thesis considers the computational modeling of hydrogen diffusion using COMSOL Multiphysics, in order to study its behavior in variation of pressure, temperature, material and dimensions. The elastomers that were analyzed are Ethylene propylene diene (EPDM), Nitrile butadiene rubber (NBR), and fluoroelastomer Viton A (FKM), which are used in the confection of seals and coatings of valves and pipes. First, simulations of spherical 10 mm diameter FKM samples were conducted at different temperatures (20 – 45 °C) and pressures (1 – 10 MPa), with the aim of analyzing its effect in the interest variables, such as the diffusion coefficient. This analysis was conducted via non-linear regressions in MATLAB, using the theoretical expression of sorption and the COMSOL data. Under these experimental conditions, an increase in permeability of 338%, diffusivity of 247% and total diffused mass (mol) of 1.5% was observed when increasing the temperature in 25 Celsius degrees. In the case of pressure variation, an increase of 900% is seen in the total diffused mass when the pressure is increased by 9 MPa. Secondly, the effects of material and diameter were analyzed, obtaining constant diffusivities and permeabilities as dimensions change, and different values depending on the material, being in both variables EPDM the highest value, followed by FKM, and finally NBR. Lastly, the effects of various spheres were studied, showing the same total diffused mass in the spheres.
Description
Keywords
Hidrógeno como combustible, Transición energética, Innovaciones tecnológicas