Thesis DIFERENTES ENFOQUES PARA MEJORAR LA TRANSFERENCIA DE CALOR EN UNA CAVIDAD DIFERENCIALMENTE CALENTADA
Loading...
Date
2022-12
Authors
Journal Title
Journal ISSN
Volume Title
Program
DEPARTAMENTO DE INGENIERÍA MECÁNICA. MAGÍSTER EN CIENCIAS DE INGENIERÍA MECÁNICA
Campus
Campus San Joaquín, Santiago
Abstract
Esta investigación es sobre el estudio del efecto producido al interior de una cavidad diferencialmente calentada (CDC) cuando se incorpora un obstáculo (actuador pasivo) o excitadores térmicos locales (actuadores activos). Los excitadores aplicados en las paredes isotérmicas se posicionan de forma no-simétrica para complementar los resultados reportados por Thiers et al. [1]. El ratio de aspecto de la CDC (altura sobre ancho) es 4, el fluido de trabajo es aire y el número de Rayleigh basado en la altura de
la cavidad es 9×107, por lo que el flujo convectivo es laminar. El objetivo principal de este trabajo es mejorar la transferencia de calor global utilizando ambos enfoques mencionados.
Se realizan simulaciones numéricas usando el solver Nek5000 que utiliza el método de los elementos espectrales de alto orden. Por una parte, el actuador pasivo aumentó la transferencia de calor global en un 4,39% y un incremento local del 80% fue obtenido. Por otra parte, después de considerar diferentes posiciones, frecuencias y fases entre un par de excitadores se llegó a la conclusión que la distribución no-simétrica no mejora la transferencia de calor global en comparación al mejor caso reportado por Thiers et al. [1]. La mejor posición para aumentar la transferencia de calor se ubica a la altura del 70% de la pared caliente y a la altura del 30% de la pared fría. En esta posición se obtiene un incremento del 5,5%
This research deals with the study of the effect produced inside a differentially heated cavity (DHC) when an obstacle (passive actuator) or a pair of thermal disturbances (active actuators) is incorporated. The thermal disturbances applied to isothermal walls are positioned non-symmetrically to complement the results reported by Thiers et al. [1]. The aspect ratio of the DHC (height over width) is 4, the working fluid is air, and the Rayleigh number based on the height of the cavity is 9×107, so the convective flow is laminar. The main objective of this work is to improve the overall heat transfer using the both mentioned approaches. Numerical simulations are performed using the high-order spectral element method fluid dynamics solver Nek5000. On the one hand, the passive actuator enhanced the global heat transfer by 4,39% and a local increase up to 80% was obtained. On the other hand, after considering different positions, frequencies and phases between a pair of thermal disturbances, it was concluded that the non-symmetrical configuration does not enhance the global heat transfer in comparison with the best case reported by Thiers et al. [1]. The best position to enhance the heat transfer is 70% of the hot plate height and 30% of the cold plate height. At this position this increase reaches 5,5%
This research deals with the study of the effect produced inside a differentially heated cavity (DHC) when an obstacle (passive actuator) or a pair of thermal disturbances (active actuators) is incorporated. The thermal disturbances applied to isothermal walls are positioned non-symmetrically to complement the results reported by Thiers et al. [1]. The aspect ratio of the DHC (height over width) is 4, the working fluid is air, and the Rayleigh number based on the height of the cavity is 9×107, so the convective flow is laminar. The main objective of this work is to improve the overall heat transfer using the both mentioned approaches. Numerical simulations are performed using the high-order spectral element method fluid dynamics solver Nek5000. On the one hand, the passive actuator enhanced the global heat transfer by 4,39% and a local increase up to 80% was obtained. On the other hand, after considering different positions, frequencies and phases between a pair of thermal disturbances, it was concluded that the non-symmetrical configuration does not enhance the global heat transfer in comparison with the best case reported by Thiers et al. [1]. The best position to enhance the heat transfer is 70% of the hot plate height and 30% of the cold plate height. At this position this increase reaches 5,5%
Description
Keywords
CALOR TRANSMISION, MECÁNICA DE FLUIDOS -- METODOS MATEMATICOS, DINAMICA DE FLUIDOS