Thesis Estudio numérico de las propiedades de amortiguación de vibraciones de un dispositivo liviano con geometría parametrizada en base a una aleacíon con memoria de forma CuAlBe
Loading...
Date
2024-03
Authors
Journal Title
Journal ISSN
Volume Title
Program
DEPARTAMENTO DE INGENIERÍA MECÁNICA. INGENIERÍA CIVIL MECÁNICA
Campus
Campus Casa Central Valparaíso
Abstract
El objetivo del estudio es la implementación de una metodología para caracterizar propiedades mecánicas de un dispositivo elaborado de una aleación con memoria de forma.
Se enfoca en evaluar su capacidad de amortiguamiento o mejor dicho capacidad de disipar energía y la influencia de variar parámetros geométricos en dicha característica, empleando para ello un software de uso comercial.
El diseño del dispositivo se basa en una geometría de manufactura simple, desarrollada por un software de diseño (CAD) resultando en 21 geometrías. El análisis numérico se realiza usando el método de elementos finitos en el software ANSYS aprovechando un módulo especializado para el modelo constitutivo. El ensayo realizado es símil a un análisis dinámico mecánico por sus condiciones de borde y resultados buscados, con los resultados de la simulación se calcula la propiedad de amortiguación mediante integración numérica corroborando los datos con el software Matlab. Para un estudio más completo se varia la amplitud de la perturbación, y la frecuencia para cada elemento resultado en 105 gráficos.
Las condiciones de borde ya fueron ocupadas en un trabajo de título anterior [6] garantizando la comparabilidad de los resultados.
Del trabajo se concluye que es posible evaluar un dispositivo liviano de disipación de energía y estimar las propiedades de amortiguación de la aleación CuAlBe, además de identificar el efecto entre parámetros geométricos y la capacidad de amortiguación del dispositivo mediante un análisis estadístico 24. En el marco utilizado para el análisis estadístico es veraz decir que la amplitud, diámetro 1 y diámetro 2, mencionados en el estudio, son significativos respecto a su influencia en la capacidad de amortiguación y que es posible optimizar la respuesta al disminuir la amplitud o aumentar el diámetro 1, dejando los demás factores fijos.
Líneas futuras de trabajo serian considerar más amplitudes, frecuencias, incluso añadir temperaturas para ampliar el estudio, realizar otros cambios geométricos al modelo inicial y buscar una relación constitutiva entre parámetros geométricos y capacidad de amortiguación mediante, por ejemplo, el uso del teorema π de Vaschy-Buckingham.
The objective of the study is the implementation of a methodology to characterize mechanical properties for a device made of a shape memory alloy. It focuses on evaluating its damping capacity or better said capacity to dissipate energy and the influence of varying geometrical parameters on this characteristic, using commercial software. The design of the device is based on a simple manufacturing geometry, developed by a design software (CAD) resulting in 21 geometries. The numerical analysis is performed using the finite element method in ANSYS software taking advantage of a specialized module for the constitutive model. The test performed is similar to a mechanical dynamic analysis due to its boundary conditions and results sought. With the simulation results, the damping property is calculated by means of numerical integration, corroborating the data with Matlab software. For a more complete study, the amplitude of the perturbation and the frequency for each element are varied in 105 graphs. The boundary conditions have already been used in a previous work [6] ensuring the comparability of the results. From the work it is concluded that it is possible to evaluate a lightweight energy dissipation device and estimate the damping properties of the CuAlBe alloy, as well as to identify the effect between geometrical parameters and the damping capacity of the device by means of a statistical analysis24. In the framework used for the statistical analysis it is true to say that the amplitude, diameter 1 and diameter 2, mentioned in the study, are significant with respect to their influence on the damping capacity and that it is possible to optimize the response by decreasing the amplitude or increasing diameter 1, leaving the other factors fixed. Future lines of work would be to consider more amplitudes, frequencies, even adding temperatures to extend the study, to make other geometrical changes to the initial model and to search for a constitutive relationship between geometrical parameters and damping capacity by means of, for example, the Vaschy-Buckingham π theorem.
The objective of the study is the implementation of a methodology to characterize mechanical properties for a device made of a shape memory alloy. It focuses on evaluating its damping capacity or better said capacity to dissipate energy and the influence of varying geometrical parameters on this characteristic, using commercial software. The design of the device is based on a simple manufacturing geometry, developed by a design software (CAD) resulting in 21 geometries. The numerical analysis is performed using the finite element method in ANSYS software taking advantage of a specialized module for the constitutive model. The test performed is similar to a mechanical dynamic analysis due to its boundary conditions and results sought. With the simulation results, the damping property is calculated by means of numerical integration, corroborating the data with Matlab software. For a more complete study, the amplitude of the perturbation and the frequency for each element are varied in 105 graphs. The boundary conditions have already been used in a previous work [6] ensuring the comparability of the results. From the work it is concluded that it is possible to evaluate a lightweight energy dissipation device and estimate the damping properties of the CuAlBe alloy, as well as to identify the effect between geometrical parameters and the damping capacity of the device by means of a statistical analysis24. In the framework used for the statistical analysis it is true to say that the amplitude, diameter 1 and diameter 2, mentioned in the study, are significant with respect to their influence on the damping capacity and that it is possible to optimize the response by decreasing the amplitude or increasing diameter 1, leaving the other factors fixed. Future lines of work would be to consider more amplitudes, frequencies, even adding temperatures to extend the study, to make other geometrical changes to the initial model and to search for a constitutive relationship between geometrical parameters and damping capacity by means of, for example, the Vaschy-Buckingham π theorem.
Description
Keywords
Aleación con memoria de forma, Histéresis mecánica