Thesis Optimización de composición de entrada a reactor de hidrogenación para la producción de metanol verde
Loading...
Date
2024-01
Authors
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Química
Campus
Campus Santiago San Joaquín
Abstract
El crecimiento en las emisiones globales de dióxido de carbono ha causado preocupación debido a la contribución de este compuesto al calentamiento global. En base a esto es que se han buscado nuevos métodos y soluciones para la transición a tecnologías limpias y sin emisiones, tanto en Chile como en el mundo, eligiendo como uno de los vectores candidatos para este cambio el hidrógeno verde. Las dificultades de almacenamiento y transporte de este han dado paso a estrategias químicas de almacenamiento de su energía, como la reacción de este y dióxido de carbono capturado para la generación de metanol verde como vector energético.
En el último tiempo se han desarrollado procesos de producción de metanol verde que mejoran el rendimiento de reacción mediante la adición de monóxido de carbono a la alimentación, pero aún existe oportunidad de mejora, optimizando la razón de utilización de estos reactivos para reducir la recirculación de gases no reaccionados, objetivo principal de este trabajo, el cual contribuye a disminuir el costo nivelado del proceso.
Para lograr este objetivo se hace uso de un modelo computacional que determina los flujos y composiciones a lo largo del proceso, siendo este validado a partir de datos bibliográficos. Gracias al modelo y una metodología de estudio paramétrico, se encuentra una tendencia clara con respecto a la recirculación, disminuyendo al ir en aumento la razón CO/CO2. Se determina además el mejor punto de operación entre distintas razones de hidrógeno a compuestos de carbono que fuera consecuente con la primera etapa del proceso, eligiendo la que representa un menor valor de recirculación de gases no convertidos, o sea, H2 : CO : CO2 = 0,8334 : 0,1216 :0,0450. Se utiliza esta información para diseñar un proceso a escala piloto el cual posteriormente es usado para determinar el tamaño y costo de los equipos, y así poder determinar el costo de inversión necesario para hacer posible el proceso, siendo este comparado con el valor del proceso con la alimentación original. Estos valores corresponden a 1 660 000 y 1 925 000 USD respectivamente.
The growth in global carbon dioxide emissions has raised concerns due to its contribution to global warming. In response, new methods and solutions have been sought for the transition to clean and emission-free technologies, both in Chile and globally, with green hydrogen being chosen as one of the candidate vectors for this change. The storage and transportation challenges of green hydrogen have led to the exploration of chemical energy storage strategies, such as the reaction of green hydrogen and captured carbon dioxide to generate green methanol as an energy carrier. Recent developments have focused on green methanol production processes that enhance reaction efficiency by adding carbon monoxide to the feed, but there is still room for improvement. Optimizing the utilization ratio of these reactants to reduce the recirculation of unreacted gases is the main objective of this work, contributing to lowering the levelized cost of the process. To achieve this goal, a computational model is employed to determine the flows and compositions throughout the process, validated using bibliographic data. Through the model and a parametric study methodology, a clear trend is identified regarding recirculation, decreasing as the CO/CO2 ratio increases. The best operating point is also determined among different hydrogen-to-carbon ratios that align with the first stage of the process, choosing the one representing the lowest value of recirculation of unconverted gases, i.e., H2 : CO : CO2 = 0,8334 : 0,1216 : 0,0450. This information is used to design a pilot-scale process, which is subsequently used to determine the size and cost of the equipment, thus establishing the investment cost required to make the process feasible, compared with the value of the process with the original feed. These values correspond to 1 660 000 and 1 925 000 USD, respectively.
The growth in global carbon dioxide emissions has raised concerns due to its contribution to global warming. In response, new methods and solutions have been sought for the transition to clean and emission-free technologies, both in Chile and globally, with green hydrogen being chosen as one of the candidate vectors for this change. The storage and transportation challenges of green hydrogen have led to the exploration of chemical energy storage strategies, such as the reaction of green hydrogen and captured carbon dioxide to generate green methanol as an energy carrier. Recent developments have focused on green methanol production processes that enhance reaction efficiency by adding carbon monoxide to the feed, but there is still room for improvement. Optimizing the utilization ratio of these reactants to reduce the recirculation of unreacted gases is the main objective of this work, contributing to lowering the levelized cost of the process. To achieve this goal, a computational model is employed to determine the flows and compositions throughout the process, validated using bibliographic data. Through the model and a parametric study methodology, a clear trend is identified regarding recirculation, decreasing as the CO/CO2 ratio increases. The best operating point is also determined among different hydrogen-to-carbon ratios that align with the first stage of the process, choosing the one representing the lowest value of recirculation of unconverted gases, i.e., H2 : CO : CO2 = 0,8334 : 0,1216 : 0,0450. This information is used to design a pilot-scale process, which is subsequently used to determine the size and cost of the equipment, thus establishing the investment cost required to make the process feasible, compared with the value of the process with the original feed. These values correspond to 1 660 000 and 1 925 000 USD, respectively.
Description
Keywords
Dióxido de carbono, Hidrógeno verde, Estudio paramétrico