Thesis Modelo de riesgo de estallidos de rocas y evaluación del efecto de medidas de mitigación mediante modelación numérica con elementos finitos
Loading...
Date
2021
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil de Minas
Campus
Campus Santiago San Joaquín
Abstract
Los estallidos de rocas son fenómenos de falla frágil, dinámicos, súbitos y que se encuentran asociados y caracterizados por un evento sísmico, lo que los ha llevado a presentar importantes desafíos en las etapas de diseño y construcción de excavaciones subterráneas. Generalmente, tienen lugar en ambientes de altos esfuerzos y en macizos rocosos de una buena calidad geoestructural. Convencionalmente, la experiencia local y global, así como el monitoreo sísmico y geotécnico del macizo rocoso en conjunto con metodologías empírico-analíticas son algunas de las herramientas utilizadas para gestionar los peligros y los riesgos asociados a los estallidos de rocas. En las últimas décadas, técnicas basadas en el modelamiento numérico han demostrado su potencial para ayudar en una mejor comprensión, evaluación y gestión de los riesgos y peligros asociados a este tipo de fenómenos.
En este estudio se emplea un método numérico de elementos finitos (FEM) para simular, modelar y analizar los procesos de falla asociados a los estallidos de rocas y cuantificar el efecto que tienen las medidas de preacondicionamiento por tronadura y el uso de soporte en su mitigación. Las simulaciones se llevan a cabo en el software RS2 de Rocscience y contemplan un ambiente característico de este tipo de fenómenos. Para modelar numéricamente los estallidos de rocas se emplea el “Enfoque DISL” propuesto por Diederichs (2007). Los principales resultados evaluados corresponden a los mecanismos de falla, esfuerzos principales, plastificación y profundidad de falla. Estos resultados permiten la construcción de un modelo de riesgo para estallidos de rocas y evaluar el desempeño de las medidas de mitigación anteriormente indicadas.
Los resultados obtenidos indican que la ocurrencia de los estallidos de rocas puede disminuir hasta en un 60% con la aplicación de medidas de mitigación combinadas de soporte y un apropiado preacondicionamiento por tronadura. Por otro lado, desde el modelo de riesgo es posible evidenciar la importancia de las propiedades geomecánicas del macizo rocoso y la condición de esfuerzos insitu al momento de determinar la intensidad que tendrán los estallidos de rocas. Además, los modelos construidos constituyen una herramienta práctica y de fácil uso para cuantificar la profundidad de falla asociada a un estallido de rocas y precisar óptimas recomendaciones de fortificación sustentadas en la plastificación del macizo rocoso y en el comportamiento mecánico del soporte.
The Rockbursts are sudden, dynamic, brittle failure phenomena that are associated and characterized by a seismic event, which has led them to present significant challenges in the design and construction stages of underground excavations. Generally, they take place in high stress environments and in rock mass of good geostructural quality. Conventionally, local and global experience, as well as seismic and geotechnical monitoring of the rock mass in conjunction with empirical-analytical methodologies are some of the tools used to manage the hazards and risks associated with rockbursts. In recent decades, techniques based on numerical modeling have shown their potential to help better understand, evaluate and manage the hazards and risks associated with this type of phenomenon. In this study, a numerical finite element method (FEM) is used to simulate, model and analyze the failure processes associated with rockbursts and quantify the effect of destress blasting measures and the use of support in their mitigation. The simulations are carried out in the Rocscience RS2 software and contemplate an environment characteristic of this type of phenomenon. To numerically model rockbursts, the “DISL Approach” proposed by Diederichs (2007) is used. The main results evaluated correspond to the failure mechanisms, principal stresses, yielding and depth of failure. These results allow the construction of a risk model for rockbursts and evaluate the performance of the mitigation measures previously indicated. The results obtained indicate that the occurrence of rockbursts can decrease by up to 60% with the application of combined mitigation measures of support and destress blasting. On the other hand, from the risk model it is possible to demonstrate the importance of the geomechanical properties of the rock mass and the condition of in-situ stresses when determining the intensity that the rockbursts will have. In addition, the built models constitute a practical and easy to use tool to quantify the depth of failure associated with a rockbursts and to specify optimal fortification recommendations based on the yielding of the rock mass and on the mechanical behavior of the support.
The Rockbursts are sudden, dynamic, brittle failure phenomena that are associated and characterized by a seismic event, which has led them to present significant challenges in the design and construction stages of underground excavations. Generally, they take place in high stress environments and in rock mass of good geostructural quality. Conventionally, local and global experience, as well as seismic and geotechnical monitoring of the rock mass in conjunction with empirical-analytical methodologies are some of the tools used to manage the hazards and risks associated with rockbursts. In recent decades, techniques based on numerical modeling have shown their potential to help better understand, evaluate and manage the hazards and risks associated with this type of phenomenon. In this study, a numerical finite element method (FEM) is used to simulate, model and analyze the failure processes associated with rockbursts and quantify the effect of destress blasting measures and the use of support in their mitigation. The simulations are carried out in the Rocscience RS2 software and contemplate an environment characteristic of this type of phenomenon. To numerically model rockbursts, the “DISL Approach” proposed by Diederichs (2007) is used. The main results evaluated correspond to the failure mechanisms, principal stresses, yielding and depth of failure. These results allow the construction of a risk model for rockbursts and evaluate the performance of the mitigation measures previously indicated. The results obtained indicate that the occurrence of rockbursts can decrease by up to 60% with the application of combined mitigation measures of support and destress blasting. On the other hand, from the risk model it is possible to demonstrate the importance of the geomechanical properties of the rock mass and the condition of in-situ stresses when determining the intensity that the rockbursts will have. In addition, the built models constitute a practical and easy to use tool to quantify the depth of failure associated with a rockbursts and to specify optimal fortification recommendations based on the yielding of the rock mass and on the mechanical behavior of the support.
Description
Keywords
Excavación de rocas, Sismicidad inducida, Modelo de elemento finito
