Thesis EVALUACIÓN TÉCNICO-ECONÓMICA DE LA IMPLEMENTACIÓN DE INVERSORES ESTÁTICOS EN PLANTAS HIDROELÉCTRICAS BASADO EN CRITERIOS DE CONFIABILIDAD Y AUMENTO DE TIEMPO ENTRE MANTENCIONES
Loading...
Date
2018
Authors
Journal Title
Journal ISSN
Volume Title
Program
INGENIERÍA CIVIL ELÉCTRICA
Campus
Casa Central Valparaíso
Abstract
Una central hidroeléctrica consta de dos sistemas principales para convertir la energía
hidráulica en energía el eléctrica. En una primera etapa la energía acumulada en los embalses
es transformada en energía mecánica en la turbina mecánica, esta turbina puede
ser de diferente tipo; Francis, Pelton, Kaplan, entre otras; pero todas tienen un punto de
operación óptimo con que se diseña y éste queda determinado por la altura de agua, el flujo y la velocidad de rotación de la turbina. Fuera de este punto de diseño el rendimiento de la turbina comienza a disminuir y, además, aparecen condiciones
fluidodinámicas que
pueden provocar cavitación, vibraciones excesivas y ruido, que van provocando daño que
al acumularse se transformar a en una falla que deber a ser reparada o reemplazarse las
partes dañadas.
El funcionamiento convencional de una Central Hidroeléctrica no contempla la variación de la velocidad de funcionamiento del eje de la turbina debido a que su valor se
encuentra relacionado con la frecuencia de la red a la que está conectado. En este trabajo
se investigaron las ventajas que representa la variación de velocidad en el funcionamiento
de las Centrales hidroeléctricas y para un caso particular como la Central Chiburgo de
Colbun SA.
Técnicamente la solución consiste en separar los sistemas correspondientes al generador
y la red mediante un convertidor de frecuencia, de esta forma se debe modificar
el sistema regulador de velocidad de la turbina para ajustar la velocidad de referencia
seg un las condiciones operacionales del momento, es decir, si altura y/o
flujo de agua se
encuentran muy alejadas del punto de diseño, se debe ajustar la velocidad de tal forma
de evitar caer en zonas en que se pueda presentar cavitación, si se logra esto también se
estar a logrando operar en puntos con mayor rendimiento. Para identificar los límites en
que se puede operar, sin caer en zonas de cavitación, existen factores como el coeficiente
de
flujo y el coeficiente de altura que dependen del
flujo y la altura respectivamente, que
se utilizan en modelos de laboratorio para identificar en qué condiciones de operación se
presenta la cavitación, esto determina una primera aproximación para ajustar la velocidad
de giro según las condiciones operacionales. La siguiente etapa de ajuste se puede realizar
en línea si se monitorean algunas variables que delaten una operación no óptima, la principal
variable a observar es el nivel de vibraciones en partes seleccionadas de la turbina,
procesando estas señales convenientemente en un esquema de control se puede obtener
una señal de ajuste para la referencia del regulador de velocidad que lleve la operación de
la turbina a zonas óptimas, sin cavitación y con mejor rendimiento.
Como ya no se estará trabajando a velocidad sincrónica para inyectar frecuencia a la
red, las tensiones inducidas deben ser transformadas a variables eléctricas continuas en
un puente rectificador, la señal de salida de éste debe ser nuevamente trasformada a una
señal compatible con la red, para ello se utiliza un inversor que toma medidas de la red
para ajustar su tensión de salida y frecuencia para inyectar energía al sistema.
En el caso particular de la Central Hidroeléctrica Chiburgo se proyectaron mejoras
en la eficiencia, disminución de costos directos de mantenimiento y aumentos en disponibilidad,
todo esto permite estimar un incremento en los ingresos de 5% al año, lo que
sin embargo, no permite justificar su implementación debido a la elevada inversión, cuyo
principal elemento es el convertidor de frecuencia o inversor.
La mirada a futuro de esta tecnología puede ser más positiva si se considera la disminución progresiva que han presentado los inversores estáticos, seg un los estudios consultados
y realizando la proyección a futuro se podrá esperar una disminución de 50% en sus precios
de entre 15 a 20 años más, en ese rango de precios, proyectos de este tipo estarán
más cerca de ser rentables y justificables económicamente.
A hydroelectric power plant consists of two main systems to convert hydraulic energy into electrical energy. In a first stage the energy accumulated in the reservoirs is transformed into mechanical energy in the mechanical turbine, this turbine can be of different type; Francis, Pelton, Kaplan, among others; but all have an optimal operating point with which it is designed and this is determined by the height of water, the flow and the speed of rotation of the turbine. Outside this design point, turbine performance begins to decrease and, in addition, fluidynamic conditions appear that can cause cavitation, excessive vibrations and noise, which cause damage that will accumulate and become a fault that must be repaired. The conventional operation of a Hydroelectric Power Plant does not contemplate the variation of the speed of operation of the shaft of the turbine because its value is related to the frequency of the network to which it is connected. In this work we investigated the advantages represented by the variation of speed in the operation of the hydroelectric power stations and for a particular case like the Central Chiburgo de Colbun SA. Technically the solution consists of separating the systems corresponding to the generator and the network by means of a frequency converter, in this way the turbine speed regulator system must be modified to adjust the reference speed according to the operational conditions of the moment, that is, if height and / or water flow are far from the design point, you should adjust the speed in such a way to avoid falling in areas where cavitation may occur, if this is achieved, you will also be able to operate at points with greater performance. To identify the limits in which it can be operated, without falling into cavitation zones, there are factors such as the flow coeficient and the height coeficient that depend on flow and height respectively, which are used in laboratory models to identify under what conditions of operation the cavitation is presented, this determines a first approximation to adjust the speed of rotation according to the operational conditions. The next stage of adjustment can be done online if some variables that show a non-optimal operation are monitored, the main variable to observe is the level of vibrations in selected parts of the turbine, processing these signals conveniently in a control scheme can be obtain an adjustment signal for the reference of the speed regulator that takes the operation of the turbine to optimal zones, without cavitation and with better performance. Since it would no longer be working at synchronous speed to inject frequency into the network, the induced voltages must be transformed to continuous electrical variables in a rectifier bridge, the output signal of this must be again transformed to a signal compatible with the network, for this is used by an inverter that takes measurements from the network to adjust its output voltage and frequency to inject energy into the system. In the particular case of the Chiburgo Hydroelectric Power Plant, improvements in e ciency, decrease in direct maintenance costs and increases in availability were projected, all this allows estimating an increase in revenues of 5% per year, however, does not allow justify its implementation due to the high investment, whose main element is the inverter or frequency converter. The future look of this technology can be more positive if one considers the progressive decrease that static investors have presented, according to the studies consulted and realizing the forward projection one could expect a 50% decrease in their prices from 15 to 20 years more, in this range of prices projects of this type would be closer to being pro table and economically justifiable.
A hydroelectric power plant consists of two main systems to convert hydraulic energy into electrical energy. In a first stage the energy accumulated in the reservoirs is transformed into mechanical energy in the mechanical turbine, this turbine can be of different type; Francis, Pelton, Kaplan, among others; but all have an optimal operating point with which it is designed and this is determined by the height of water, the flow and the speed of rotation of the turbine. Outside this design point, turbine performance begins to decrease and, in addition, fluidynamic conditions appear that can cause cavitation, excessive vibrations and noise, which cause damage that will accumulate and become a fault that must be repaired. The conventional operation of a Hydroelectric Power Plant does not contemplate the variation of the speed of operation of the shaft of the turbine because its value is related to the frequency of the network to which it is connected. In this work we investigated the advantages represented by the variation of speed in the operation of the hydroelectric power stations and for a particular case like the Central Chiburgo de Colbun SA. Technically the solution consists of separating the systems corresponding to the generator and the network by means of a frequency converter, in this way the turbine speed regulator system must be modified to adjust the reference speed according to the operational conditions of the moment, that is, if height and / or water flow are far from the design point, you should adjust the speed in such a way to avoid falling in areas where cavitation may occur, if this is achieved, you will also be able to operate at points with greater performance. To identify the limits in which it can be operated, without falling into cavitation zones, there are factors such as the flow coeficient and the height coeficient that depend on flow and height respectively, which are used in laboratory models to identify under what conditions of operation the cavitation is presented, this determines a first approximation to adjust the speed of rotation according to the operational conditions. The next stage of adjustment can be done online if some variables that show a non-optimal operation are monitored, the main variable to observe is the level of vibrations in selected parts of the turbine, processing these signals conveniently in a control scheme can be obtain an adjustment signal for the reference of the speed regulator that takes the operation of the turbine to optimal zones, without cavitation and with better performance. Since it would no longer be working at synchronous speed to inject frequency into the network, the induced voltages must be transformed to continuous electrical variables in a rectifier bridge, the output signal of this must be again transformed to a signal compatible with the network, for this is used by an inverter that takes measurements from the network to adjust its output voltage and frequency to inject energy into the system. In the particular case of the Chiburgo Hydroelectric Power Plant, improvements in e ciency, decrease in direct maintenance costs and increases in availability were projected, all this allows estimating an increase in revenues of 5% per year, however, does not allow justify its implementation due to the high investment, whose main element is the inverter or frequency converter. The future look of this technology can be more positive if one considers the progressive decrease that static investors have presented, according to the studies consulted and realizing the forward projection one could expect a 50% decrease in their prices from 15 to 20 years more, in this range of prices projects of this type would be closer to being pro table and economically justifiable.
Description
Keywords
INVERSORES ESTATICOS, PLANTA HIDROELECTRICA, CRITERIOS DE CONFIABILIDAD