EL REPOSITORIO SE ENCUENTRA EN MARCHA BLANCA

 

Thesis
Adapting bipedal neuro-motor policies on planned footsteps

dc.contributor.advisorCreeixell Fuentes, Werner Uwe (Profesor Guía)
dc.contributor.advisorAraya López, Mauricio Alejandro (Profesor Guía)
dc.contributor.advisorVásconez, Juan Pablo (Profesor Correferente)
dc.contributor.departmentUniversidad Técnica Federico Santa María. Departamento de Electrónica
dc.coverage.spatialCampus Casa Central Valparaíso
dc.creatorRojas Sánchez, Miguel Yerón
dc.date.accessioned2024-09-13T17:38:08Z
dc.date.available2024-09-13T17:38:08Z
dc.date.issued2024-04
dc.description.abstractThis study investigates a hierarchical reinforcement learning approach to achieve human-like walking in bipedal robots while following marked footsteps. Traditionally, state machines and model-based methods were used for this task, ensuring stability and safety but lacking natural human-like motion. Our approach utilizes a two-level architecture: a high-level policy trained specifically for following footsteps and a low level policy distilled from motion capture data to generate natural gaits. Experiments demonstrate that this hierarchical approach significantly outperforms training a single network, particularly for complex tasks on human-sized robots. The low-level network plays a crucial role, substantially reducing joint torques and speeds while achieving stable walking. However, a current limitation is the inability to follow footsteps on stairs. We observed that both general and locomotion motion capture datasets achieved similar results in following footsteps, but the locomotion dataset generated more visually natural human-like walking, especially for forward walking. Future work will aim to improve the robot’s walking robustness for navigating uneven terrains like stairs and slopes. Our findings suggest that low-level networks pre-trained on motion capture data are a viable approach for achieving human-like walking gaits in real-world, human-sized robots. This research paves the way for developing bipedal robots with efficient and natural walking capabilities. Accompanying videos1 and code2 are available online.
dc.description.degreeMAGISTER EN CIENCIAS DE LA INGENIERIA ELECTRONICA
dc.description.programDEPARTAMENTO DE ELECTRÓNICA. MAGÍSTER EN CIENCIAS DE LA INGENIERÍA ELECTRÓNICA (MS)
dc.identifier.barcode3560900285573
dc.identifier.urihttps://repositorio.usm.cl/handle/123456789/67
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectBipedal locomotion
dc.subjectDeep reinforcement learning
dc.subjectHierarchical networks
dc.subjectHuman-like motion
dc.subjectMotion capture
dc.titleAdapting bipedal neuro-motor policies on planned footsteps
dspace.entity.typeTesis

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
3560900285573UTFSM.pdf
Size:
6.71 MB
Format:
Adobe Portable Document Format