Thesis Reacciones de compuestos organometálicos de titanio en superficies de óxido de titanio y silicio para deposición de capa atómica
Loading...
Date
2022
Authors
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Química
Campus
Campus Santiago San Joaquín
Abstract
La industria nanotecnológica se rige por la miniaturización continua, ilustrado en la ley de Moore, una duplicación cada dos años en el número de transistores por circuito integrado. Continuar esa tendencia presenta desafíos tecnológicos, como prevenir la corriente de fuga atribuida al efecto túnel, en el óxido aislante de la compuerta del MOSFET. Una solución propuesta para esto es reemplazar al dióxido de silicio (SiO2), material por defecto utilizado de aislante de compuerta, por otro óxido binario de mayor constante dieléctrica, donde destaca el dióxido de titanio (TiO2). Un método de nano-manufactura masificado actualmente es la ALD (deposición de capa atómica). Debido a esto, identificar un precursor que optimice la ALD de superficies de TiO2, es un amplio campo de investigación. Por otro lado, la DFT (teoría de funcionales de densidad) es un método numérico de la química cuántica, que por cálculos ab initio permite simular interacciones de precursor y superficie, modelar su estructura y estudiar su termodinámica.
Dentro de este contexto, se plantea el objetivo de evaluar cuál de entre tres precursores de titanio de amplio uso industrial (TiCl4, TDMAT y TTIP) es más favorable para la ALD de TiO2, utilizando como método la DFT y mediante el software VASP, con el funcional de intercambio y correlación GGA-PBE.
Por medio de procedimientos de validación y benchmarking se generó un slab hidratado de rutilo(110), un modelo periódico del TiO2, que en conjunto con un slab hidroxilado de α-cuarzo(0001) (modelo del SiO2), permitieron simular dos pasos claves del mecanismo del ciclo ALD, la MA (adsorción molecular) y la FLE (quimisorción del primer intercambio de ligando). Luego se analizaron tendencias observadas entre descriptores termodinámicos generados a partir de las simulaciones, y su correlación con parámetros de la superficie y/o precursor utilizado.
Se concluyó que los átomos de oxígeno en la superficie de TiO2 poseen mayor densidad electrónica que los en la superficie de SiO2. Paralelamente, se confirmó que la longitud del enlace formado está negativamente correlacionada a su exotermicidad. Además, que la exotermicidad de la corrección de dispersión neta está positivamente correlacionada al diámetro molecular del precursor utilizado. Asimismo, se concluyó que la magnitud del momento dipolar neto de un precursor homoléptico adsorbido, está positivamente correlacionada a la exotermicidad de su MA. Por otro lado, los resultados obtenidos para ambos pasos, permitieron inferir que la FLE del TDMAT es espontánea para ambas superficies, producto de una baja barrera de activación. Las tendencias mencionadas están en buena concordancia con otros estudios teóricos y experimentales.
Finalmente se concluyó que, los precursores organometálicos de titanio son más favorables para la ALD de TiO2, en comparación al TiCl4, debido a sus mayores exotermicidades tanto para heterodeposición como homodeposición. Además, el TDMAT presentó mayor exotermicidad que el TTIP, en ambos pasos simulados, atribuido a la baja energía de activación de su FLE.
Nanotechnology and its industry are ruled by constant miniaturization. Such progress has been illustrated by Moore’s law, the doubling of the number of transistors in an integrated circuit every two years. To retain this trend means facing technological challenges, like preventing current leakage due to quantum tunnelling in the MOSFET’s gate oxide. A proposed solution to this is to replace silicon dioxide (SiO2) as the default material of the gate oxide, for another binary oxide of higher dielectric constant, where titanium dioxide (TiO2) stands out. Because ALD (atomic layer deposition) is a currently widespread means of nanomanufacturing, identifying a precursor that optimizes the ALD of TiO2 surfaces is a sought-after field of research. On the other hand, DFT (density functional theory), a numerical method of quantum chemistry which by means of ab initio calculations, allows for the simulation of interactions between precursors and surfaces, the modeling their structures and the study their thermodynamics. In this context, evaluating three titanium precursors of widespread industrial use (TiCl4, TDMAT and TTIP) to identify which is most advantageous for the ALD of TiO2, is proposed as the objective of this study. This analysis was conducted by means of DFT in the VASP software, utilizing the exchange and correlation functional of GGA-PBE. Through validation and benchmarking procedures, a slab of the hydrated rutile(110) surface, a periodical model of TiO2, was generated, and along with a hydroxylated α-quartz(0001) slab (SiO2 model), were employed for the simulation of two key steps in the mechanism of the ALD cycle: the MA (molecular adsorption) and the FLE (first ligand exchange). Then an analysis was made from observed tendencies between thermodynamic descriptors generated from the simulations, and their correlation with the utilized surface and/or precursor parameters. It was concluded that the oxygen atoms in the TiO2 surface have higher electronic densities than those in the SiO2 surface. In parallel, it was confirmed that bond length is negatively correlated with the exothermicity of their formation. Additionally, the exothermicity of the net dispersion correction is positively correlated with the molecular diameter of the precursor employed. Similarly, it was concluded that the magnitude of the dipole moment of a homoleptic precursor after adsorption, is positively correlated with the exothermicity of such MA. Furthermore, the results from both steps allowed to infer that the FLE of TDMAT is spontaneous on both surfaces, due to a low activation barrier. The alluded tendencias are all in good agreement with other studies, both experimental and theoretical. Finally, it was concluded that titanium organometallic precursors are more favorable for the ALD of TiO2, rather than TiCl4, because of the higher exothermicities of their homodepositions, as well as those of their heterodepositions. Moreover, TDMAT showed higher exothermicity than TTIP in both simulated steps, attributed to the lower activation energy of its FLE.
Nanotechnology and its industry are ruled by constant miniaturization. Such progress has been illustrated by Moore’s law, the doubling of the number of transistors in an integrated circuit every two years. To retain this trend means facing technological challenges, like preventing current leakage due to quantum tunnelling in the MOSFET’s gate oxide. A proposed solution to this is to replace silicon dioxide (SiO2) as the default material of the gate oxide, for another binary oxide of higher dielectric constant, where titanium dioxide (TiO2) stands out. Because ALD (atomic layer deposition) is a currently widespread means of nanomanufacturing, identifying a precursor that optimizes the ALD of TiO2 surfaces is a sought-after field of research. On the other hand, DFT (density functional theory), a numerical method of quantum chemistry which by means of ab initio calculations, allows for the simulation of interactions between precursors and surfaces, the modeling their structures and the study their thermodynamics. In this context, evaluating three titanium precursors of widespread industrial use (TiCl4, TDMAT and TTIP) to identify which is most advantageous for the ALD of TiO2, is proposed as the objective of this study. This analysis was conducted by means of DFT in the VASP software, utilizing the exchange and correlation functional of GGA-PBE. Through validation and benchmarking procedures, a slab of the hydrated rutile(110) surface, a periodical model of TiO2, was generated, and along with a hydroxylated α-quartz(0001) slab (SiO2 model), were employed for the simulation of two key steps in the mechanism of the ALD cycle: the MA (molecular adsorption) and the FLE (first ligand exchange). Then an analysis was made from observed tendencies between thermodynamic descriptors generated from the simulations, and their correlation with the utilized surface and/or precursor parameters. It was concluded that the oxygen atoms in the TiO2 surface have higher electronic densities than those in the SiO2 surface. In parallel, it was confirmed that bond length is negatively correlated with the exothermicity of their formation. Additionally, the exothermicity of the net dispersion correction is positively correlated with the molecular diameter of the precursor employed. Similarly, it was concluded that the magnitude of the dipole moment of a homoleptic precursor after adsorption, is positively correlated with the exothermicity of such MA. Furthermore, the results from both steps allowed to infer that the FLE of TDMAT is spontaneous on both surfaces, due to a low activation barrier. The alluded tendencias are all in good agreement with other studies, both experimental and theoretical. Finally, it was concluded that titanium organometallic precursors are more favorable for the ALD of TiO2, rather than TiCl4, because of the higher exothermicities of their homodepositions, as well as those of their heterodepositions. Moreover, TDMAT showed higher exothermicity than TTIP in both simulated steps, attributed to the lower activation energy of its FLE.
Description
Keywords
Nanotecnología, Titanio, Adsorción
