Thesis Optimizacion de producción costo-competitiva de metanol a partir de hidrogeno verde y CO2 capturado
Loading...
Date
2025
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Química
Campus
Campus Santiago San Joaquín
Abstract
El metanol es un compuesto clave debido a su versatilidad como materia prima en procesos químicos, portador de energía, combustible y aditivo. Actualmente, su producción se basa principalmente en combustibles fósiles, lo que genera altas emisiones de CO2. Sin embargo, Chile, con su potencial en energías renovables, ofrece una oportunidad para producir H2 verde que, combinado con CO2 capturado, permite la síntesis de metanol de manera sostenible.
Esta memoria se centra en minimizar el costo nivelado de la producción de metanol a partir de H2 verde y CO2 capturado de fuentes industriales al manipular las condiciones del proceso. Para ello, se realizan simulaciones en Aspen Plus V.14, con la modelación de una planta con un reactor isotérmico de lecho fijo multitubular y catalizador sólido. Los resultados incluyen análisis de conversión, selectividad, rendimiento, emisiones de CO2 y costos.
El estudio considera una relación estequiométrico fija de alimentación de H2:CO2 de 3:1 en moles, variando la presión, temperatura, flujo de alimentación y largo del reactor. Los resultados muestran que el metanol verde producido es carbono negativo, con una pureza técnica superior al 98%, en donde por cada kg de metanol generado, se eliminan 0.61 kg de CO2 de la atmósfera.
Methanol is a key compound due to its versatility as a raw material in chemical processes, energy carrier, fuel, and additive. Currently, its production is primarily based on fossil fuels, leading to high CO2 emissions. However, Chile’s potential in renewable energy presents an opportunity to produce green H2, which, when combined with captured CO2, enables the sustainable synthesis of methanol. This thesis focuses on minimizing the levelized cost of methanol production from green H2 and industrially captured CO2 by optimizing process conditions. Simulations are conducted in Aspen Plus V.14, modeling a plant with a multitubular fixed-bed isothermal reactor and a solid catalyst. The results include analyses of conversion, selectivity, yield, CO2 emissions, and costs. The study considers a fixed stoichiometric feed ratio of H2:CO2 of 3:1 in moles, varying pressure, temperature, feed flow rate, and reactor length. The results show that the green methanol produced is carbon-negative, with a technical purity above 98%. For every kilogram of methanol generated, 0.61 kg of CO2 is removed from the atmosphere.
Methanol is a key compound due to its versatility as a raw material in chemical processes, energy carrier, fuel, and additive. Currently, its production is primarily based on fossil fuels, leading to high CO2 emissions. However, Chile’s potential in renewable energy presents an opportunity to produce green H2, which, when combined with captured CO2, enables the sustainable synthesis of methanol. This thesis focuses on minimizing the levelized cost of methanol production from green H2 and industrially captured CO2 by optimizing process conditions. Simulations are conducted in Aspen Plus V.14, modeling a plant with a multitubular fixed-bed isothermal reactor and a solid catalyst. The results include analyses of conversion, selectivity, yield, CO2 emissions, and costs. The study considers a fixed stoichiometric feed ratio of H2:CO2 of 3:1 in moles, varying pressure, temperature, feed flow rate, and reactor length. The results show that the green methanol produced is carbon-negative, with a technical purity above 98%. For every kilogram of methanol generated, 0.61 kg of CO2 is removed from the atmosphere.
Description
Keywords
Metanol, Hidrógeno verde, Química
