Thesis CARACTERIZACIÓN DE LOS ESTUDIANTES DE PROGRAMACIÓN SEGÚN SU DESEMPEÑO: UN MODELO PREDICTIVO
Loading...
Date
2022-10
Authors
Journal Title
Journal ISSN
Volume Title
Program
DEPARTAMENTO DE INFORMÁTICA. INGENIERÍA CIVIL INFORMÁTICA
Campus
Campus San Joaquín, Santiago
Abstract
Hoy en día, para las carreras y universidades un alto índice de reprobación puede significar en la reducción de años de acreditación que posee, afectar el ambiente universitario, como también generar un desfase respecto a la malla curricular por parte del estudiante. Es por ello que la asignatura de programación IWI-131 de la Universidad Técnica Federico Santa María requiere contar con herramientas o mecanismos que permitan detectar tempranamente aquellos estudiantes con mayor probabilidad de reprobar, para ello se utilizó un enfoque de minería de datos para obtener una caracterización del comportamiento de los estudiantes y la influencia que tiene en el rendimiento de la asignatura, generando agrupamientos, reglas de asociación, entre otros; logrando así identificar grupos de comportamientos y tendencias que permitirán tomar decisiones en base a ellos
Nowadays, for careers and universities, a high failure rate can mean a reduction in the number of years of accreditation, affect the university environment, as well as generate a gap with respect to the student’s curriculum. That is why the programming course IWI-131 of the Universidad Técnica Federico Santa María requires tools or mechanisms that allow early detection of those students most likely to fail, for this a data mining approach was used to obtain a characterization of the behavior of students and the influence it has on the performance of the subject, generating groupings, association rules, among others; thus identifying groups of behaviors and trends that will allow making decisions based on them
Nowadays, for careers and universities, a high failure rate can mean a reduction in the number of years of accreditation, affect the university environment, as well as generate a gap with respect to the student’s curriculum. That is why the programming course IWI-131 of the Universidad Técnica Federico Santa María requires tools or mechanisms that allow early detection of those students most likely to fail, for this a data mining approach was used to obtain a characterization of the behavior of students and the influence it has on the performance of the subject, generating groupings, association rules, among others; thus identifying groups of behaviors and trends that will allow making decisions based on them
Description
Keywords
MINERIA DE DATOS, SISTEMA DE ALERTA TEMPRANA, UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA, RENDIMIENTO ACADÉMICO