Thesis Determinación numérica y experimental de módulo de elasticidad en materiales porosos basados en superficies mínimas triplemente periódicas
Loading...
Date
2024-03
Authors
Journal Title
Journal ISSN
Volume Title
Program
DEPARTAMENTO DE INGENIERÍA MECÁNICA. INGENIERÍA CIVIL MECÁNICA
Campus
Campus Casa Central Valparaíso
Abstract
En ingeniería existe una búsqueda continua y desarrollo de nuevos materiales y estructuras que puedan ser usadas en distintas aplicaciones, siendo los materiales porosos una de las áreas de interés en este contexto. Por otra parte, el desarrollo de la manufactura aditiva ha permitido la materialización de complejos diseños que no serían posibles de obtener mediante otros procesos de fabricación tradicionales. En este contexto es que ha surgido el interés en el estudio de materiales porosos basados en superficies mínimas triplemente periódicas (TPMS), los que podrían suponer una alternativa ante otras estructuras porosas debido a la posibilidad de controlar sus propiedades geométricas y mecánicas en función de las ecuaciones matemáticas que las generan.
En este trabajo se busca obtener el módulo de elasticidad normalizado de distintas estructuras basadas en TPMS de manera numérica y experimental, evaluando estas en función de la porosidad y contrastando los resultados de ambas metodologías. Para la parte numérica, se diseñan modelos que son simulados a compresión mediante el Método de Elementos Finitos en el software comercial Ansys, habiendo determinado previamente un elemento de volumen representativo (RVE) adecuado. Se realiza un muestreo de distintas porosidades en un rango de interés y se obtiene un ajuste de curva para cada una de las TPMS base seleccionadas. Para la parte experimental, se fabrican muestras mediante modelado por deposición fundida (FDM) usando filamentos de ácido poliláctico (PLA), muestras que son posteriormente ensayadas a compresión en máquina universal de ensayos mecánicos.
La aplicación de pruebas estadísticas sobre resultados experimentales permite concluir que existe una diferencia significativa en el módulo de elasticidad normalizado entre distintas TPMS base analizadas, tal como lo predice el método numérico aplicado.
In engineering there is a continuous search and development of new materials and structures that can be used in different applications, with porous materials being one of the areas of interest in this context. On the other hand, the development of additive manufacturing has allowed the materialization of complex designs that would not be possible to obtain through other traditional manufacturing processes. In this context, interest has arisen in the study of porous materials based on triply periodic minimal surfaces (TPMS), which could be an alternative to other porous structures due to the possibility of controlling their geometric and mechanical properties based on the mathematical equations that generate them. This work seeks to obtain the normalized elastic modulus of different TPMS-based structures numerically and experimentally, evaluating these based on porosity and contrasting the results of both methodologies. For the numerical part, samples are designed that are simulated in compression using the finite element method in the commercial software Ansys, having previously determined an appropriate representative volume element (RVE). A sampling of different porosities is carried out in a range of interest and a curve fit is obtained for each of the selected base TPMS. For the experimental part, samples are manufactured by fused deposition modeling (FDM) using polylactic acid (PLA) filaments, samples that are subsequently tested under compression in a universal mechanical testing machine. The application of statistical tests on experimental results allows us to conclude that there is a significant difference in the normalized elastic modulus between different base TPMS analyzed, as predicted by the applied numerical method.
In engineering there is a continuous search and development of new materials and structures that can be used in different applications, with porous materials being one of the areas of interest in this context. On the other hand, the development of additive manufacturing has allowed the materialization of complex designs that would not be possible to obtain through other traditional manufacturing processes. In this context, interest has arisen in the study of porous materials based on triply periodic minimal surfaces (TPMS), which could be an alternative to other porous structures due to the possibility of controlling their geometric and mechanical properties based on the mathematical equations that generate them. This work seeks to obtain the normalized elastic modulus of different TPMS-based structures numerically and experimentally, evaluating these based on porosity and contrasting the results of both methodologies. For the numerical part, samples are designed that are simulated in compression using the finite element method in the commercial software Ansys, having previously determined an appropriate representative volume element (RVE). A sampling of different porosities is carried out in a range of interest and a curve fit is obtained for each of the selected base TPMS. For the experimental part, samples are manufactured by fused deposition modeling (FDM) using polylactic acid (PLA) filaments, samples that are subsequently tested under compression in a universal mechanical testing machine. The application of statistical tests on experimental results allows us to conclude that there is a significant difference in the normalized elastic modulus between different base TPMS analyzed, as predicted by the applied numerical method.
Description
Keywords
Materiales porosos, Superficies mínimas triplemente periódicas, Módulo de elasticidad, Manufactura aditiva, Porosidad, Método de elementos finitos