Thesis MODELACIÓN Y EVALUACIÓN DE SISTEMAS DE DIGESTIÓN ANAEROBIA PARA PREDICCIÓN DEL COMPORTAMIENTO DE PLANTAS DE TRATAMIENTO DE AGUAS MUNICIPALES
Loading...
Date
2019
Authors
Journal Title
Journal ISSN
Volume Title
Program
UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA UTFSM. DEPARTAMENTO DE INGENIERÍA QUÍMICA Y AMBIENTAL. MAGÍSTER EN CIENCIAS DE LA INGENIERÍA QUÍMICA
Campus
Casa Central Valparaíso
Abstract
El tratamiento de aguas residuales municipales ha avanzado de ser un proceso que requiere
energía para minimizar el impacto ambiental de efluentes, hasta un enfoque de economía
circular que permite transformar residuos en energía, recuperando nutrientes. Entre las etapas
que permiten que una planta de tratamientos pueda hacer esto, se encuentra la digestión
anaerobia, que utiliza la materia orgánica de efluentes para producir biogás, como fuente
energética. Este proceso debe ir acompañado de equipos que eliminen el nitrógeno en forma
de amonio que se acumula en los procesos de digestión. Una de las alternativas que
minimizan el uso energético es el proceso de nitrificación parcial-Anammox.
En este contexto, se proponen dos modelos teóricos y fenomenológicos que permiten predecir
condiciones de operación de los reactores de digestión anaerobia y nitrificación parcial. Se
utiliza un enfoque estacionario para el digestor anaerobio, planteando ecuaciones algebraicas
no-lineales a partir de balances de masa y relaciones de equilibrio, mientras que para el
reactor de nitrificación parcial se usa un enfoque dinámico, considerando las estequiometrías
y cinéticas de las reacciones biológicas y fisicoquímicas del proceso, aplicadas a balances de
masa de un reactor continuo en estado transitorio.
Para el reactor de digestión anaerobia, se obtiene un modelo que predice una composición de
metano en el biogás entre 70% y 80%, con una pérdida de metano en el efluente en torno a
40% para una concentración de DQO de entrada de 500 mg/L. Se dimensiona una torre de
desorción para minimizar el impacto ambiental asociado a esta pérdida, logrando recuperar
el 95% de metano con una columna de burbujeo de 1,5 metros de altura. Esto implica la
disminución de 1,5 toneladas de dióxido de carbono equivalentes de emisiones de gases
invernadero, para una planta que trata 100 m3/d de agua residual.
Para el sistema de nitrificación parcial, se obtiene un modelo que predice la capacidad de
acumular nitrito según las condiciones iniciales y de arranque en la operación del equipo. Se
determina que un reactor operado a una relación de tiempo de residencia celular (Volumen
de equipo sobre flujo de purga de sólidos) sobre tiempo de residencia hidráulico (Volumen de equipo sobre flujo de agua residual) mayor a 15, con una relación alcalinidad sobre amonio
cercana a uno (en concentración molar), es capaz de acumular nitrito de manera estable,
incluso para inóculos con baja relación de bacterias oxidantes de amonio sobre bacterias
oxidantes de nitrito. Se propone mantener un alto tiempo de residencia celular en la puesta
en marcha, controlando la alcalinidad del sistema para que su relación con el amonio se
mantenga constante.
Los modelos planteados presentan limitaciones por las simplificaciones que se hicieron en
cada uno, por lo que la proyección directa de esta investigación es la validación de estos
modelos con datos a escala de laboratorio y a escala completa.
The urban wastewater treatment has advanced from requiring energy to minimize the environmental impact of effluents to a circular economy scope, transforming waste into energy, recovering nutrients. Among the stages that allows a treatment plant to achieve this, anaerobic digestion is found as a process that transform organic matter into biogas, a source of energy. This process has to be accompanied with an ammoniacal nitrogen removal equipment, that is accumulated in digestion processes. One of the alternatives that minimizes the energy use is the partial nitrification- Anammox process. In this context, two theoretical and phenomenological models are proposed that allow to predict operation conditions of anaerobic digestion and partial nitrification reactors. A stationary approach is used for the anaerobic digester, proposing non-linear algebraic equations from mass balances and equilibrium relations, while for the partial nitrification reactor a dynamic approach is used, considering the stoichiometries and kinetics of the biological reactions and physicochemical processes, applied to mass balances of a continuous reactor in a transient state. For the anaerobic digestion reactor, a model is obtained that predicts a methane composition in the biogas between 70% and 80%, with a loss of methane in the effluent of around 40% for an inlet COD concentration of 500 mg / L. A desorption tower is dimensioned to minimize the environmental impact associated with this loss, achieving a 95% methane recovery with a 1.5 m bubble column. This implies the reduction of 1.5 tons of carbon dioxide equivalent of greenhouse gas emissions, for a treatment plant of 100 m3/d of wastewater. For the partial nitrification system, a model is obtained that predicts the capacity to accumulate nitrite according to the initial conditions and start up in the operation of the equipment. It is determined that a reactor operated at a cellular residence time (Volume of equipment over solid purge flow) over hydraulic residence time (Volume of equipment on wastewater flow) ratio greater than 15, with an alkalinity over ammonium ratio close to one (in molar concentration), it is able to accumulate nitrite in a stable manner, even for inocula with a low ratio of ammonium oxidizing bacteria to nitrite oxidizing bacteria. It is proposed to maintain a high cellular residence time during start-up, controlling the alkalinity of the system so that its relationship with ammonium remains constant. The proposed models have limitations due to the simplifications that were made in each, so the direct projection of this research is the validation of these models with data at laboratory scale and at full scale.
The urban wastewater treatment has advanced from requiring energy to minimize the environmental impact of effluents to a circular economy scope, transforming waste into energy, recovering nutrients. Among the stages that allows a treatment plant to achieve this, anaerobic digestion is found as a process that transform organic matter into biogas, a source of energy. This process has to be accompanied with an ammoniacal nitrogen removal equipment, that is accumulated in digestion processes. One of the alternatives that minimizes the energy use is the partial nitrification- Anammox process. In this context, two theoretical and phenomenological models are proposed that allow to predict operation conditions of anaerobic digestion and partial nitrification reactors. A stationary approach is used for the anaerobic digester, proposing non-linear algebraic equations from mass balances and equilibrium relations, while for the partial nitrification reactor a dynamic approach is used, considering the stoichiometries and kinetics of the biological reactions and physicochemical processes, applied to mass balances of a continuous reactor in a transient state. For the anaerobic digestion reactor, a model is obtained that predicts a methane composition in the biogas between 70% and 80%, with a loss of methane in the effluent of around 40% for an inlet COD concentration of 500 mg / L. A desorption tower is dimensioned to minimize the environmental impact associated with this loss, achieving a 95% methane recovery with a 1.5 m bubble column. This implies the reduction of 1.5 tons of carbon dioxide equivalent of greenhouse gas emissions, for a treatment plant of 100 m3/d of wastewater. For the partial nitrification system, a model is obtained that predicts the capacity to accumulate nitrite according to the initial conditions and start up in the operation of the equipment. It is determined that a reactor operated at a cellular residence time (Volume of equipment over solid purge flow) over hydraulic residence time (Volume of equipment on wastewater flow) ratio greater than 15, with an alkalinity over ammonium ratio close to one (in molar concentration), it is able to accumulate nitrite in a stable manner, even for inocula with a low ratio of ammonium oxidizing bacteria to nitrite oxidizing bacteria. It is proposed to maintain a high cellular residence time during start-up, controlling the alkalinity of the system so that its relationship with ammonium remains constant. The proposed models have limitations due to the simplifications that were made in each, so the direct projection of this research is the validation of these models with data at laboratory scale and at full scale.
Description
Keywords
DIGESTION ANAEROBIA, TRATAMIENTO DE AGUAS, MODELACION DINAMICA