Thesis Resolución de problemas estocástico de unit commitment mediante algoritno basado en descomposición de benders.
Loading...
Date
2025-04-30
Authors
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Industrial
Departament
Campus
Campus Santiago Vitacura
Abstract
En este trabajo se presenta un algoritmo basado en la descomposición de Benders para resolver un problema estocástico de dos etapas de Unit Commitment (UC) con restricciones de red. Las fuentes de incertidumbre consideradas en el problema son la potencia de viento y la demanda del sistema. El método de solución propuesto introduce una descomposición ´única del problema original en un problema maestro (PM) y un conjunto de subproblemas, uno por cada escenario presente en el modelo. El PM corresponde a un problema estocástico de dos etapas de UC sin restricciones de red; estas son reemplazadas por una restricción de balance del sistema para generar soluciones más cercanas al ´optimo. Cada subproblema (SP) corresponde a un chequeo de factibilidad de las restricciones de red para un escenario y genera únicamente cortes de factibilidad. Adicionalmente, se mejora el desempeño del algoritmo introduciendo diferentes normas en la función objetivo de cada SP para generar cortes más profundos. El modelo propuesto es puesto a prueba en un sistema modificado del New England IEEE-39 bus test system. Los experimentos computacionales demuestran la efectividad del algoritmo propuesto al lograr mejoras significativas en tiempos de resolución comparado con la resolución directa de la versión determinista equivalente del mismo problema.
In this work, an algorithm based on Benders Decomposition for solving a two-stage stochastic network-constrained unit commitment (UC) problem is presented. The sources of uncertainty considered in the problem are the wind power and the system demand. The proposed solution method introduces a unique decomposition of the original problem into a master problem (MP) and a set of subproblems, one for each scenario present in the model. The MP corresponds to a two-stage stochastic UC problem without the network constraints; these are replaced by a balance constraint of the system to generate solutions closer to the optimal value. Each subproblem (SP) corresponds to a feasibility check of the network constraints for one scenario and generates only feasibility cuts. Additionally, the algorithm’s performance is enhanced by introducing different norms in the objective function of each SP to generate deeper cuts. The proposed model is tested on a modified New England IEEE- 39 bus test system. The computational experiments demonstrate the effectiveness of the proposed algorithm by achieving significant improvements in resolution times compared to the direct resolution of the deterministic equivalent version of the same problem.
In this work, an algorithm based on Benders Decomposition for solving a two-stage stochastic network-constrained unit commitment (UC) problem is presented. The sources of uncertainty considered in the problem are the wind power and the system demand. The proposed solution method introduces a unique decomposition of the original problem into a master problem (MP) and a set of subproblems, one for each scenario present in the model. The MP corresponds to a two-stage stochastic UC problem without the network constraints; these are replaced by a balance constraint of the system to generate solutions closer to the optimal value. Each subproblem (SP) corresponds to a feasibility check of the network constraints for one scenario and generates only feasibility cuts. Additionally, the algorithm’s performance is enhanced by introducing different norms in the objective function of each SP to generate deeper cuts. The proposed model is tested on a modified New England IEEE- 39 bus test system. The computational experiments demonstrate the effectiveness of the proposed algorithm by achieving significant improvements in resolution times compared to the direct resolution of the deterministic equivalent version of the same problem.
Description
Keywords
Descomposición de Benders, Energía eólica, Programación estocástica, Energías renovables no convencionales, Modelos matemáticos