Thesis DETERMINACIÓN DEL DESPLAZAMIENTO DE FLUENCIA EN SISTEMAS DE MUROS DE HORMIGÓN ARMADO
Loading...
Date
2019
Journal Title
Journal ISSN
Volume Title
Program
INGENIERÍA CIVIL
Campus
Casa Central Valparaíso
Abstract
El desempeño de los edificios en el terremoto ocurrido en febrero del 2010 en nuestro país fue satisfactorio. Sin embargo, un número de edificios de media y gran altura experimentaron grandes daños e incluso algunos colapsaron, lo que motivó a una modificación de la norma de diseño para elementos de hormigón armado, oficializándose el año 2011 el Decreto Supremo N°60 (DS60).
El DS60, que modifica los requisitos de diseño y cálculo para elementos de hormigón armado respecto a lo establecido en ACI318-08, propone dos maneras de estimar la demanda de curvatura en función del desplazamiento lateral de diseño en muros. La primera, corresponde a un modelo simplificado de rótula plástica, mientras que la segunda, permite separar en el cálculo el desplazamiento que ocurre dentro del rango elástico del que ocurre dentro de la incursión no lineal. Por otro lado, establece que, para alcanzar el desplazamiento de diseño de la estructura, se debe proveer un elemento especial de borde si la deformación unitaria en la fibra más comprimida del hormigón es mayor que 0.003.
En esta memoria, se estudia un sistema estructural compuesto por muros rectangulares esbeltos de hormigón armado de diferentes largos, con el objetivo de estimar el desplazamiento de techo que produce la fluencia en los distintos muros, al ser evaluados como elementos dentro de un sistema. Posteriormente, se evalúa la necesidad de proporcionar un elemento especial de borde para alcanzar el desplazamiento de diseño de la estructura considerando la componente elástica.
Para evaluar el desplazamiento lateral que hace fluir cada muro, se realizó un análisis incremental. Los resultados se compararon con los de un análisis dinámico no-lineal utilizando cinco registros que corresponden a terremotos ocurridos en Chile, México y Nueva Zelanda. Todos los análisis se realizaron en el programa Ruaumoko.
Los resultados de estos análisis muestran que el desplazamiento en el techo que produce la fluencia en la zona crítica en cada muro, debe ser evaluado considerando la respuesta no lineal del sistema estructural, porque la deformada del sistema impone demandas de rotación en los muros más flexibles difíciles de estimar con expresiones simplificadas que, al considerar cada muro como un elemento independiente del sistema, sobreestiman su capacidad de rotación. Por lo tanto, al utilizar expresiones simplificadas para calcular la demanda de rotación en la sección crítica de un muro, el máximo desplazamiento elástico que se debe considerar es el desplazamiento que produce la fluencia en el muro más rígido.
Por otro lado, estos mismos análisis mostraron grandes diferencias en los requerimientos de la resistencia al corte en los muros flexibles, comparados con los resultados de un análisis lineal elástico. Se concluye que, más que sofisticar el análisis lineal elástico, es preferible ir incorporando verificaciones simples junto con un análisis incremental, dado que la tecnología ya lo permite.
The performance of buildings in Chile during the 27 February 2010 Maule earthquake was satisfactory. Nevertheless, a number of medium- and high-rise buildings experienced great damage and even collapse. This led to a modification of the Chilean reinforced concrete (RC) standard, via the Supreme Decree number 60 (DS60) enacted in 2011. The decree DS60, which incorporates modifications to the ACI318-08 design code, proposes two ways for estimating the curvature demand upon RC walls as a function of the design lateral roof displacement of the building. The first of them corresponds to a simplified version of plastic hinge procedure, whereas the second allows separating the total displacement experienced by a wall into its linear-elastic and inelastic components. Additionally, DS60 requires the use of special boundary confinement elements if the compression strain of the outermost fiber of the wall cross-section exceeds 0.003. This work studies a structural system comprising of slender rectangular RC walls of different lengths, with the objective of estimating the roof displacement needed to achieve yielding conditions in their critical cross-sections, evaluated as isolated elements and as part of the system. The need for providing special confinement elements to the walls accounting for elastic deformations is also assessed. A pushover analysis was carried out for evaluating the lateral roof displacement at which yielding is achieved in the different walls. These results are compared to those obtained with non-linear dynamic analyses (NLDA) of the wall system subjected to a suite of five earthquake ground motions recorded in Chile, Mexico and New Zealand. All these analyses were performed with the computer program Ruaumoko. The results show that the lateral roof displacement that produces yielding in the critical section of each wall must be evaluated considering the non-linear response of the system as a whole, because the deformed shape of the system imposes larger rotation demands upon the shorter walls, importantly differing from the estimations assuming isolated members. Therefore, if the elastic component of the total roof displacement of flexible walls is included and evaluated via simplified formulae for isolated buildings, this should correspond to the yielding roof displacement of the stiffest wall within the system. On another aspect, the analyses showed great differences in the shear demands placed upon the most flexible walls of the system, compared to those obtained with a linear elastic analysis. It is concluded that, rather than sophisticated linear elastic analysis, it is preferable to incorporate simple verifications alongside incremental analyses, as the current technology allows it.
The performance of buildings in Chile during the 27 February 2010 Maule earthquake was satisfactory. Nevertheless, a number of medium- and high-rise buildings experienced great damage and even collapse. This led to a modification of the Chilean reinforced concrete (RC) standard, via the Supreme Decree number 60 (DS60) enacted in 2011. The decree DS60, which incorporates modifications to the ACI318-08 design code, proposes two ways for estimating the curvature demand upon RC walls as a function of the design lateral roof displacement of the building. The first of them corresponds to a simplified version of plastic hinge procedure, whereas the second allows separating the total displacement experienced by a wall into its linear-elastic and inelastic components. Additionally, DS60 requires the use of special boundary confinement elements if the compression strain of the outermost fiber of the wall cross-section exceeds 0.003. This work studies a structural system comprising of slender rectangular RC walls of different lengths, with the objective of estimating the roof displacement needed to achieve yielding conditions in their critical cross-sections, evaluated as isolated elements and as part of the system. The need for providing special confinement elements to the walls accounting for elastic deformations is also assessed. A pushover analysis was carried out for evaluating the lateral roof displacement at which yielding is achieved in the different walls. These results are compared to those obtained with non-linear dynamic analyses (NLDA) of the wall system subjected to a suite of five earthquake ground motions recorded in Chile, Mexico and New Zealand. All these analyses were performed with the computer program Ruaumoko. The results show that the lateral roof displacement that produces yielding in the critical section of each wall must be evaluated considering the non-linear response of the system as a whole, because the deformed shape of the system imposes larger rotation demands upon the shorter walls, importantly differing from the estimations assuming isolated members. Therefore, if the elastic component of the total roof displacement of flexible walls is included and evaluated via simplified formulae for isolated buildings, this should correspond to the yielding roof displacement of the stiffest wall within the system. On another aspect, the analyses showed great differences in the shear demands placed upon the most flexible walls of the system, compared to those obtained with a linear elastic analysis. It is concluded that, rather than sophisticated linear elastic analysis, it is preferable to incorporate simple verifications alongside incremental analyses, as the current technology allows it.
Description
Keywords
HORMIGON ARMADO, DESPLAZAMIENTO DE FLUENCIA, DISEÑO SISMICO