Thesis Integración de peligro sísmico en la definición de secuencia de extracción
Loading...
Date
2025
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil de Minas
Campus
Campus Santiago San Joaquín
Abstract
Esta investigación desarrolla y valida un modelo matemático de optimización lineal diseñado para la planificación minera en operaciones subterráneas utilizando el método de sublevel stoping. El modelo integra tanto la velocidad de extracción como el peligro sísmico asociado, factores críticos cuya relación no es considerada en la creación de planes de producción, y se suele considerar sobre la marcha en la planificación minera actual. Aunque este enfoque convencional permite considerar conocimiento experto, resulta ineficiente ante la complejidad de las variables y restricciones involucradas. En contraste, el modelo propuesto ofrece una solución más sistemática, eficiente y adaptable a diversas configuraciones operativas.
La metodología del trabajo se realizó en tres etapas: una validación del modelo en un caso simplificado para evaluar su precisión, también con simulaciones controladas para analizar el impacto de parámetros clave como tasas de extracción y riesgo sísmico, y su aplicación en un caso realista con condiciones más representativas, considerando caserones de leyes variables y desarrollos de distintas longitudes.
En los resultados, se analiza cómo el modelo genera secuencias de extracción dinámicas y ajustadas a las restricciones operativas, permitiendo una evaluación detallada de los efectos de las configuraciones de parámetros. Además, se presentan planes de producción que reflejan la capacidad del modelo para equilibrar los objetivos económicos con la estabilidad operativa, destacando su potencial para generar estrategias eficientes y seguras en minería subterránea.
This study develops and validates a mathematical optimization model designed to enhance mine planning in underground operations utilizing the sublevel stoping method. The model incorporates seismic hazard and extraction rates as critical variables, factors traditionally overlooked in manual mine planning. While conventional methods allow for expert knowledge integration, they often fall short in addressing the complexity of operational restrictions and variables. In contrast, the proposed model offers a systematic and efficient approach capable of adapting to diverse configurations. The methodology consisted of three main stages: first, the model was validated in a simplified scenario with a reduced number of stopes and developments to ensure its alignment with the defined constraints and objectives. Then, controlled simulations were performed, varying key parameters such as extraction rates and maximum tonnage limits to evaluate their impact on production plans. Finally, the model was applied to a realistic case study, incorporating stopes with variable grades and developments of different lengths to examine its adaptability to more complex and representative operational conditions. The model was tested in the realistic case study, which included a design with 55 stopes and various levels of seismic hazard. Results showed that by adjusting the seismic Hazard parameters, the Net Present Value (NPV) could increase by 11% and the total extraction time could decrease by 13 %, demonstrating the significant impact of these configurations on mine planning.subterranea.
This study develops and validates a mathematical optimization model designed to enhance mine planning in underground operations utilizing the sublevel stoping method. The model incorporates seismic hazard and extraction rates as critical variables, factors traditionally overlooked in manual mine planning. While conventional methods allow for expert knowledge integration, they often fall short in addressing the complexity of operational restrictions and variables. In contrast, the proposed model offers a systematic and efficient approach capable of adapting to diverse configurations. The methodology consisted of three main stages: first, the model was validated in a simplified scenario with a reduced number of stopes and developments to ensure its alignment with the defined constraints and objectives. Then, controlled simulations were performed, varying key parameters such as extraction rates and maximum tonnage limits to evaluate their impact on production plans. Finally, the model was applied to a realistic case study, incorporating stopes with variable grades and developments of different lengths to examine its adaptability to more complex and representative operational conditions. The model was tested in the realistic case study, which included a design with 55 stopes and various levels of seismic hazard. Results showed that by adjusting the seismic Hazard parameters, the Net Present Value (NPV) could increase by 11% and the total extraction time could decrease by 13 %, demonstrating the significant impact of these configurations on mine planning.subterranea.
Description
Keywords
Optimización lineal, Planificación minera, Peligro sísmico