Thesis PROCEDIMIENTO PARA EL DIMENSIONAMIENTO DE LOS INDUCTORES DE BALANCE EN EQUIPOS RECTIFICADORES DE ALTA CORRIENTE
Loading...
Date
2019
Authors
Journal Title
Journal ISSN
Volume Title
Program
Campus
Universidad Técnica Federico Santa María UTFSM. Casa Central Valparaíso
Abstract
En este estudio se determina un procedimiento para dimensionar los reactores de balance, con los cualesse logra homogeneizar las corrientes que circulan por los semiconductores conectados en paralelo, en equipostransformador-rectificador de alta corriente. En este trabajo se desarrolla un modelo electro-térmico de unrectificador doble estrella con reactor de interfase, el cual permite dimensionar el reactor de balance y simularla operación del equipo.La repartición heterogénea de corriente entre los elementos conectados en paralelo, afecta a todos los componentesde un sistema y provoca una operación ineficiente del equipo, por lo que se estudian las diferentesalternativas existentes como solución. En este trabajo se define que la mejor alternativa para minimizar el problemaes incorporar un inductor de balance, el cual debe ser capaz de homogeneizar la caída de tensión de loscomponentes conectados en paralelo. Para lograr dimensionar este inductor se desarrolla un modelo electrotérmicode un rectificador específico, el cual permite analizar la calidad de la solución a través de simulaciones,e indicar el beneficio obtenido. De acuerdo a esto, el modelamiento desarrollado se divide en dos etapas: primerose describen las técnicas de modelación, y luego se determina el modelo de parámetros concentrados delos elementos que componen al rectificador.Con respecto a lo primero, se describe como utilizar la técnica numérica PEEC (Partial Element EquivalentCircuit) para obtener el circuito equivalente de una configuración de barras de un equipo rectificador. Asimismo,se define que el modelamiento térmico de las barras y los tiristores se basa en un modelo térmico estáticocompuesto por resistencias térmicas. Por su parte, se identifican modelos eléctricos existentes para los SCR yel transformador que alimenta al equipo rectificador, basándose en la documentación técnica suministrada porlos fabricantes y considerando aquellos cuya relación complejidad/calidad se baja.Con respecto a la modelación, en forma separada se obtienen los parámetros concentrados que componen losmodelos electro-térmicos de la configuración de barras, los tiristores y el transformador. Luego, el diseño delmodelo se realiza en el programa PLECS, en donde se acoplan todos estos parámetros concentrados obtenidos.Previo al análisis de las simulaciones, fue necesario calibrar e identificar algunos parámetros del modelo queeran desconocidos. Para lograr la validación del modelo, se cuenta con información de tensiones y corrientesmedidas en un rectificador de 30 kADC de carga nominal. En este proceso de calibración, se logra un coeficientede variación del 2.88 %, el cual representa el error que existe entre las corrientes medidas y las corrientesobtenidas de la simulación del modelo.Finalmente, del diseño básico del inductor, se desprende que existen restricciones geométricas de la estructuradel rectificador que limitan el valor de inductancia alcanzable en la práctica a 2 H. Con el procedimientodesarrollado en este trabajo, se determina que al conectar un reactor en serie a cada semiconductor, con unvalor de inductancia de 1.5 H, es posible lograr un factor de reducción del 12.5 %. Este valor del factor dereducción, indica que la corriente máxima que circulará por el rectificador es menor o igual a 1.15 veces lacorriente promedio, incrementando la eficiencia del equipo. Los resultados de la simulación, mostraron que si el equipo opera a distintos niveles de carga, la solución propuesta responde satisfactoriamente y mantiene ladisminución en el nivel de desbalance. Asimismo, la simulación ante condición degradada, indica que con lainclusión del reactor se logra reducir el nivel de desbalance, y se disminuye la temperatura máxima que alcanzacada barra refrigerada.
In this study, a procedure is determined to dimension the blancing reactors, with which it is possible tohomogenize the circulation currents of the semiconductors in parallel, in the high current transformer-rectifierequipment. In this work an electro-thermal model of a double-star rectifier with an interface reactor will bedeveloped, which allows to dimension the balancing reactor and simulate the operation of the equipment.The heterogeneous distribution of current between the elements connected in parallel, affects all the componentsof a system, and causes an inefficient operation of the equipment, because of that the different existingalternatives are studied as a solution. In this work, the incorporation of a balance inductor it is defined that thebest alternative to minimize the problem, which must be able to homogenize the voltage drop of the componentsconnected in parallel. To achieve the dimensioning of this inductor, an electro-thermal model of a specificrectifier is developed, which allows analyzing the quality of the solution through simulations, and indicating thebenefit obtained. According to this, the modeling developed is divided into two stages: first the modeling techniquesare described, and then the model of concentrated parameters of the elements that make up the rectifieris determined.With respect to the modeling techniques, it is described how to use the PEEC numerical technique (PartialElement Equivalent Circuit) to obtain the equivalent circuit of a busbar configuration of a rectifier equipment.Likewise, it is defined that the thermal modeling of the bars and the thyristors is based on a static thermalmodel composed of thermal resistances. On the other hand, existing electrical models are identified for theSCR and the transformer that feeds the rectifier equipment, based on the technical documentation provided bythe manufacturers, and considering those whose complexity/quality relationship is lowered.With respect to modeling, the concentrated parameters that make up the electro-thermal models of the barconfiguration, the thyristors and the transformer are obtained separately. Then, the design of the model is carriedout in the PLECS program, where all these concentrated parameters obtained are coupled. Prior to the analysisof the simulations, it was necessary to calibrate and identify some parameters of the model that were unknown.To achieve the validation of the model, information of voltages and currents measured in a rectifier of 30 kADCof nominal load is available. In this calibration process, a coefficient of variation of 2.88% is achieved, whichrepresents the error that exists between the measured currents and the currents obtained from the simulation ofthe model.Finally, from the basic design of the inductor, it follows that there are geometrical restrictions of the rectifierstructure that limit the inductance value in practice to 2 H. With the procedure developed in this work, it isdetermined that by connecting a reactor in series to each semiconductor, with an inductance value of 1.5 H, it ispossible to achieve a reduction factor of 12.5 %. This value of the reduction factor, indicates that the maximumcurrent that will circulate through the rectifier is less than or equal to 1.15 times the average current, increasingthe efficiency of the equipment. The results of the simulation showed that if the equipment operates at differentload levels, the proposed solution responds satisfactorily and maintains the decrease in the level of imbalance.Likewise, the simulation in degraded condition indicates that the inclusion of the reactor reduces the level ofimbalance, and decreases the maximum temperature reached by each refrigerated bar.
In this study, a procedure is determined to dimension the blancing reactors, with which it is possible tohomogenize the circulation currents of the semiconductors in parallel, in the high current transformer-rectifierequipment. In this work an electro-thermal model of a double-star rectifier with an interface reactor will bedeveloped, which allows to dimension the balancing reactor and simulate the operation of the equipment.The heterogeneous distribution of current between the elements connected in parallel, affects all the componentsof a system, and causes an inefficient operation of the equipment, because of that the different existingalternatives are studied as a solution. In this work, the incorporation of a balance inductor it is defined that thebest alternative to minimize the problem, which must be able to homogenize the voltage drop of the componentsconnected in parallel. To achieve the dimensioning of this inductor, an electro-thermal model of a specificrectifier is developed, which allows analyzing the quality of the solution through simulations, and indicating thebenefit obtained. According to this, the modeling developed is divided into two stages: first the modeling techniquesare described, and then the model of concentrated parameters of the elements that make up the rectifieris determined.With respect to the modeling techniques, it is described how to use the PEEC numerical technique (PartialElement Equivalent Circuit) to obtain the equivalent circuit of a busbar configuration of a rectifier equipment.Likewise, it is defined that the thermal modeling of the bars and the thyristors is based on a static thermalmodel composed of thermal resistances. On the other hand, existing electrical models are identified for theSCR and the transformer that feeds the rectifier equipment, based on the technical documentation provided bythe manufacturers, and considering those whose complexity/quality relationship is lowered.With respect to modeling, the concentrated parameters that make up the electro-thermal models of the barconfiguration, the thyristors and the transformer are obtained separately. Then, the design of the model is carriedout in the PLECS program, where all these concentrated parameters obtained are coupled. Prior to the analysisof the simulations, it was necessary to calibrate and identify some parameters of the model that were unknown.To achieve the validation of the model, information of voltages and currents measured in a rectifier of 30 kADCof nominal load is available. In this calibration process, a coefficient of variation of 2.88% is achieved, whichrepresents the error that exists between the measured currents and the currents obtained from the simulation ofthe model.Finally, from the basic design of the inductor, it follows that there are geometrical restrictions of the rectifierstructure that limit the inductance value in practice to 2 H. With the procedure developed in this work, it isdetermined that by connecting a reactor in series to each semiconductor, with an inductance value of 1.5 H, it ispossible to achieve a reduction factor of 12.5 %. This value of the reduction factor, indicates that the maximumcurrent that will circulate through the rectifier is less than or equal to 1.15 times the average current, increasingthe efficiency of the equipment. The results of the simulation showed that if the equipment operates at differentload levels, the proposed solution responds satisfactorily and maintains the decrease in the level of imbalance.Likewise, the simulation in degraded condition indicates that the inclusion of the reactor reduces the level ofimbalance, and decreases the maximum temperature reached by each refrigerated bar.
Description
Catalogado desde la version PDF de la tesis.
Keywords
DIMENSIONAMIENTO, EQUIPOS RECTIFICADORES, INDUCTOR DE BALANCE