Thesis Estudio sobre los factores que afectan el aprendizaje en un curso introductorio de programación
Loading...
Date
2025-08-12
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Informática
Departament
Campus
Campus Santiago San Joaquín
Abstract
Este estudio explora los factores que inciden en el rendimiento académico de estudiantes de primer año en un curso introductorio de programación en la Universidad Técnica Federico Santa María durante el año 2025. Empleando una metodología cuantitativa, de corte transversal y diseño no experimental, se analizan variables académicas previas (Puntaje NEM, Puntaje Ranking, Puntaje Matemática M1, Puntaje Matemática M2, Puntaje Lenguaje, Puntaje Ciencias, Puntaje Historia), habilidades cognitivas (Test de Lawson, Test de Diagnóstico de Matemática, Test de Pensamiento Computacional y sus dimensiones), factores psicológicos (motivación y autoeficacia), y datos cualitativos (carrera y campus). Los datos se recopilaron de diversas fuentes institucionales y encuestas, y fueron sometidos a un riguroso proceso de limpieza y transformación en R. El análisis incluyó estadísticos descriptivos, correlaciones de Pearson y Spearman, y el desarrollo de modelos de regresión lineal múltiple para predecir el rendimiento en el primer certamen de programación y la nota final del curso. Los resultados muestran que el rendimiento en el Certamen 1 es el predictor más robusto de la nota final del curso (r = 0,783). Las habilidades lógico-matemáticas (Puntaje Matemática M1, M2) y las dimensiones del pensamiento computacional (especialmente Pensamiento Algorítmico y Abstracción) también demuestran una correlación positiva y significativa con el desempeño en programación. En contraste, las variables psicológicas como la motivación y autoeficacia, así como el Test de Lawson, mostraron correlaciones muy bajas, lo que podría deberse a sesgos en la recolección de datos y al enfoque de las pruebas(...).
This study explores the factors influencing the academic performance of first-year students in an introductory programming course at Universidad Técnica Federico Santa María during 2025. Employing a quantitative, cross-sectional, and non-experimental methodology, the study analyzes prior academic variables (NEM Score, Ranking Score, Mathematics M1 Score, Mathematics M2 Score, Language Score, Science Score, History Score), cognitive skills (Lawson Test, Mathematics Diagnostic Test, Computational Thinking Test and its dimensions), psychological factors (motivation and self-efficacy), and qualitative data (major and campus). The data were collected from various institutional sources and surveys, and subjected to a rigorous cleaning and transformation process in R. The analysis included descriptive statistics, Pearson and Spearman correlations, and the development of multiple linear regression models to predict performance in the first programming exam and the final course grade. Results show that performance in Exam 1 is the most robust predictor of the final course grade (r = 0,783). Logical-mathematical skills (Mathematics M1, M2 Scores) and computational thinking dimensions (especially Algorithmic Thinking and Abstraction) also demonstrate a positive and significant correlation with programming performance. In contrast, psychological variables such as motivation and self-efficacy, as well as the Lawson Test, showed very low correlations, which could be due to biases in data collection and the focus of the tests(...).
This study explores the factors influencing the academic performance of first-year students in an introductory programming course at Universidad Técnica Federico Santa María during 2025. Employing a quantitative, cross-sectional, and non-experimental methodology, the study analyzes prior academic variables (NEM Score, Ranking Score, Mathematics M1 Score, Mathematics M2 Score, Language Score, Science Score, History Score), cognitive skills (Lawson Test, Mathematics Diagnostic Test, Computational Thinking Test and its dimensions), psychological factors (motivation and self-efficacy), and qualitative data (major and campus). The data were collected from various institutional sources and surveys, and subjected to a rigorous cleaning and transformation process in R. The analysis included descriptive statistics, Pearson and Spearman correlations, and the development of multiple linear regression models to predict performance in the first programming exam and the final course grade. Results show that performance in Exam 1 is the most robust predictor of the final course grade (r = 0,783). Logical-mathematical skills (Mathematics M1, M2 Scores) and computational thinking dimensions (especially Algorithmic Thinking and Abstraction) also demonstrate a positive and significant correlation with programming performance. In contrast, psychological variables such as motivation and self-efficacy, as well as the Lawson Test, showed very low correlations, which could be due to biases in data collection and the focus of the tests(...).
Description
Keywords
Programación introductoria, Intervenciones tempranas en educación superior, Factores psicológicos