Thesis PROPIEDADES DE TRANSPORTE ELETRÓNICO EN NANOCINTAS DE SILICENO
Loading...
Date
2019
Authors
Journal Title
Journal ISSN
Volume Title
Program
UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA UTFSM. DOCTORADO EN CIENCIAS, MENCIÓN FÍSICA
Campus
Casa Central Valparaíso
Abstract
Esta tesis se centra en el estudio teórico de las propiedades electrónicas,
termo-eléctricas y de transporte en sistemas nano-estructurados basados en Silicio.
Cuando tenemos una distribución hexagonal espacial de los átomos de Silicio, estos
puede formar estructuras bi-dimensionales. Esta estructura bi-dimensional de los
átomos de Silicio da lugar a una red completamente nueva, con propiedades muy
distintas al Silicio en su estado extendido, llamada Siliceno. En particular, estudiaremos
nano-cintas de siliceno con bordes tipo armchair. En este tipo de sistemas, los electrones
se encuentran con finados a moverse cuasi uni-dimensionalmente por el material,
dependiendo fuertemente de las condiciones de borde. Al igual que otros sistemas
bi-dimensionales, las características metálicas o semiconductoras depende del tamaño
de la nano-cinta y/o de campos externos.
Para estudiar las propiedades electrónicas, termo-eléctricas y de transporte,
hemos propuesto analizar una nano-cinta de siliceno rectangular conectado a cables
semi-infi nitos (fuente y sumidero). Para evitar los estados de borde protegidos
topológicamente que aparecen en la energía de Fermi, restringimos nuestro modelo
a nano-cintas con bordes tipo armchair. El modelo utilizado para describir el
comportamiento de los electrones en la red es mediante un Hamiltoniano de Enlace
Fuerte considerando un solo orbital tipo π. Las propiedades de transporte electrónico se
calculan utilizando el formalismo de funciones de Green combinado con las técnicas de
decimación. En el régimen de respuesta lineal, la Conductancia se calcula a partir de la
formulación de Landauer.
Los sistemas estudiados en esta tesis, consisten en nano-cintas de siliceno con
bordes armchair, las cuales consideramos tres tipos de con guraciones; una distribución aleatoria de vacantes considerando un sustrato ferro-magnéticos no conductor,
distribución aleatoria de átomos adheridos a la nano-cinta en presencia de un sustrato
ferro-magnéticos no conductor y átomos adheridos sobre toda la nano-cinta. En ellas se
estudiaron las propiedades electrónicas, termo-eléctricas y de transporte.
This thesis focuses on the theoretical study of electronic, thermoelectric and transport properties in nano-structured systems based on Silicon. When we have a spatial hexagonal distribution of the silicon atoms, these can form two-dimensional structures. This two-dimensional structure of the Silicon atoms gives rise to a completely new lattice, with properties very di erent to Silicon bulk, called Silicene. In particular, we will study silicon nano-ribbons with armchair-type edges. In this type of systems, the electrons are con ned to move quasi uni-dimensionally through the material, depending strongly on the edge conditions. Like other two-dimensional systems, the metallic or semi-conductor characteristics depend on the size of the nano-ribbon and/or external elds. To study the electronic, thermoelectric and transport properties, we have proposed to analyze a rectangular silicon nano-ribbon connected to semi-in nite leads (source and drain). To avoid the topologically protected edge states that appear in the Fermi energy, we restrict our model to nano-ribbons with armchair-type edges. The model used to describe the behavior of electrons in the lattice is through a Tight-Binding Hamiltonian considering a single -orbital type. The electronic transport properties are calculated using Green's function formalism combined with decimation techniques. In the linear response regime, Conductance is calculated from Landauer's formulation. The systems studied in this thesis consist of silicon nano-ribbons with armchair edges, which we consider three types of con gurations; a random distribution of vacancies considering a non-conductive ferro-magnetic substrate, random distribution of ad-atoms to the nano-ribbon in the presence of a non-conductive ferro-magnetic substrate and full covered ad-atom to nano-ribbon. In those systems the electronic, thermoelectric and transport properties were studied.
This thesis focuses on the theoretical study of electronic, thermoelectric and transport properties in nano-structured systems based on Silicon. When we have a spatial hexagonal distribution of the silicon atoms, these can form two-dimensional structures. This two-dimensional structure of the Silicon atoms gives rise to a completely new lattice, with properties very di erent to Silicon bulk, called Silicene. In particular, we will study silicon nano-ribbons with armchair-type edges. In this type of systems, the electrons are con ned to move quasi uni-dimensionally through the material, depending strongly on the edge conditions. Like other two-dimensional systems, the metallic or semi-conductor characteristics depend on the size of the nano-ribbon and/or external elds. To study the electronic, thermoelectric and transport properties, we have proposed to analyze a rectangular silicon nano-ribbon connected to semi-in nite leads (source and drain). To avoid the topologically protected edge states that appear in the Fermi energy, we restrict our model to nano-ribbons with armchair-type edges. The model used to describe the behavior of electrons in the lattice is through a Tight-Binding Hamiltonian considering a single -orbital type. The electronic transport properties are calculated using Green's function formalism combined with decimation techniques. In the linear response regime, Conductance is calculated from Landauer's formulation. The systems studied in this thesis consist of silicon nano-ribbons with armchair edges, which we consider three types of con gurations; a random distribution of vacancies considering a non-conductive ferro-magnetic substrate, random distribution of ad-atoms to the nano-ribbon in the presence of a non-conductive ferro-magnetic substrate and full covered ad-atom to nano-ribbon. In those systems the electronic, thermoelectric and transport properties were studied.
Description
Keywords
NANO-CINTAS DE SILICENO, TRANSPORTE ELECTRÓNICO, BORDES TIPO ARMCHAIR