Thesis ANÁLISIS DE LA INCLUSIÓN DEL AJUSTE DE AZUFRE Y ARSÉNICO EN EL CALCULO DE EMISIONES PARA FUNDICIONES DE COBRE
Loading...
Date
2017
Journal Title
Journal ISSN
Volume Title
Program
Campus
Universidad Técnica Federico Santa María UTFSM. Casa Central Valparaíso
Abstract
El siguiente trabajo consiste en la implementación de una metodología para la estimación de emisiones en el balance metalúrgico de una planta de fundición, mediante el uso de correlaciones empíricas y el cierre de balances de azufre y arsénico mediante la reconciliación de datos. El objetivo de esta modificación es estimar de manera más realista las emisiones de azufre y arsénico, incorporando el error de medición a su cálculo a través del análisis de los factores de calidad.Actualmente, las emisiones se calculan mediante el descuadre en el balance de materia, que se obtiene luego de aplicar las leyes de azufre y arsénico a los flujos e inventarios de secos totales reconciliados mediante la resolución de un problema de optimización. El descuadre de azufre y arsénico en cada nodo se identifica como emisión, a pesar de que esta no haya sido registrada operacionalmente. Lo anterior implica que en algunas situaciones se pueden obtener emisiones negativas en algunos nodos, situación físicamente imposible.La mejora realizada consistió en agregar las emisiones históricas de la planta y los gases capturados en las campanas de los hornos como flujos adicionales a la estructura típica de un balanceador actual y así realizar la reconciliación con un bajo factor de calidad en conjunto con el resto de los flujos. Estas emisiones históricas se calcularon como un porcentaje de los flujos de alimentación en alguno de los nodos más importante de la planta y se clasificaron según su compuesto (Azufre o Arsénico), según del equipo de donde provenga y el porcentaje de captura de los gases.Adicionalmente, para cerrar el balance de azufre y arsénico se agregó un nodo para la ‘Planta de Ácido’, el que es alimentado por los flujos de gases capturados de azufre y arsénico en las campanas de los hornos. Las salidas de esta planta son estimadas también como un porcentaje de la alimentación que posteriormente participaran en la reconciliación junto a las emisiones históricas.El nuevo balanceador asigna flujos de emisión a los principales equipos dentro del macronodo fundición: Convertidor Teniente, Convertidor Pierce Smith, Horno de Tratamiento de Escoria y Horno RAF; en conjunto con la planta de ácido. Puesto que se asume que en estos equipos se produce casi la totalidad de las emisiones, se implementó la metodología de asignar emisiones históricas. Para el resto de los nodos no se consideraron emisiones, dejándolos con emisión cero. A las emisiones históricas se le asignaron factores de calidad bajos con respecto a los flujos medidos, y el nuevo diagrama de flujo se reconcilió para azufre y arsénico. De esta forma se obtuvo una estimación de las emisiones que toma en cuenta el error de mediciones de las leyes de azufre y arsénico, y se cumple el balance de materia en cada nodo de la planta.Los factores de calidad que se utilizaron para este propósito fueron 1, 4 ,16 y 400,comparándose los resultados con los obtenidos mediante el método de descuadre. Para las emisiones de azufre se ajustó de mejor manera el factor de calidad 4, para el caso del arsénico se ajustó de mejor manera el factor de calidad 16. Lo anterior se determino comparando la suma de los errores cuadrático entre las emisiones obtenidas por el método de descuadre y las obtenidas iterando los factores de calidad mencionados. Adicionalmente a la modificación de una fundición tipo para poder agregar información histórica de emisiones, la metodología propuesta permite agregar en el futuro otros nodos que también presenten emisiones y de esta forma mejorar su estimación.
The following work consists in the implementation of a methodology for the estimation of emissions in the metallurgical balance of a foundry plant, through the use of empirical correlations and the closure of sulfur and arsenic balances through the data reconciliation. The objective of this modification is estimate more realistically the emissions of sulfur and arsenic, incorporating the measurement error to its calculation through the analysis of the quality factors.Currently, the emissions are calculated through the mismatch in the material balance which is obtained after applying the sulfur and arsenic laws to the total flows and dry inventories reconciled by solving an optimization problem. The mismatch of sulfur and arsenic in each node is identified as emission, although it has not been registered operationally. The above implies that in some situations can be obtained negative emissions in some nodes, this situation is physically impossible.The improvement has been to add the historical emissions of the plant and the gas captured in the furnace bells as an additional flow to the current balancer and thus to realize the reconciliation with a low quality factor together with the rest of the flows. These historical emissions were calculated as a percentage of the feed flows in some of the most important nodes of the plant and were classified according to their compound (Sulfur or Arsenic), according to the equipment from where it comes and the percentage of capture of the gas.In addition, to close the balance of sulfur and arsenic was added a node to the 'Acid Plant', which is fed by the captured gas flows of sulfur and arsenic in the furnace bells. The outputs of this plant are also estimated as a percentage of the feed that later participate in the reconciliation together with the historic emissions .The new balancer assigns flows emission to the main equipment within the macronode foundry: teniente converter, pierce smith converter, slag treatment furnace and RAF furnace; together with the acid plant. Since it is assumed that almost all the emissions are produced in these equipments, it’s implemented the methodology of assigning historical emissions. For the rest of the nodes, no emissions were considered, leaving them with zero emission. Historical emissions were assigned low quality factors with respect to metered flows, and the new process flow diagram was reconciled for sulfur and arsenic. In this way the estimation of the emissions takes into account the error of measurements of the laws of sulfur and arsenic was obtained, and the balance of material in each node of the plant is fulfilled.The quality factors that were used for this purpose were 1,4,16 and 400 comparing with those obtained by the mismatch method. For the sulfur emissions the quality factor 4 was better adjusted, the quality factor 16 was better adjusted for the case of arsenic. This was determined by comparing the sum of the quadratic errors between the emissions obtained by the mismatch method and those obtained by iterating the mentioned quality factors. In additions to the modification of a type foundry to be able to ad historical emissions information, the proposed methodology allows to add in the future other nodes that also present emissions and in this way to improve their estimation.
The following work consists in the implementation of a methodology for the estimation of emissions in the metallurgical balance of a foundry plant, through the use of empirical correlations and the closure of sulfur and arsenic balances through the data reconciliation. The objective of this modification is estimate more realistically the emissions of sulfur and arsenic, incorporating the measurement error to its calculation through the analysis of the quality factors.Currently, the emissions are calculated through the mismatch in the material balance which is obtained after applying the sulfur and arsenic laws to the total flows and dry inventories reconciled by solving an optimization problem. The mismatch of sulfur and arsenic in each node is identified as emission, although it has not been registered operationally. The above implies that in some situations can be obtained negative emissions in some nodes, this situation is physically impossible.The improvement has been to add the historical emissions of the plant and the gas captured in the furnace bells as an additional flow to the current balancer and thus to realize the reconciliation with a low quality factor together with the rest of the flows. These historical emissions were calculated as a percentage of the feed flows in some of the most important nodes of the plant and were classified according to their compound (Sulfur or Arsenic), according to the equipment from where it comes and the percentage of capture of the gas.In addition, to close the balance of sulfur and arsenic was added a node to the 'Acid Plant', which is fed by the captured gas flows of sulfur and arsenic in the furnace bells. The outputs of this plant are also estimated as a percentage of the feed that later participate in the reconciliation together with the historic emissions .The new balancer assigns flows emission to the main equipment within the macronode foundry: teniente converter, pierce smith converter, slag treatment furnace and RAF furnace; together with the acid plant. Since it is assumed that almost all the emissions are produced in these equipments, it’s implemented the methodology of assigning historical emissions. For the rest of the nodes, no emissions were considered, leaving them with zero emission. Historical emissions were assigned low quality factors with respect to metered flows, and the new process flow diagram was reconciled for sulfur and arsenic. In this way the estimation of the emissions takes into account the error of measurements of the laws of sulfur and arsenic was obtained, and the balance of material in each node of the plant is fulfilled.The quality factors that were used for this purpose were 1,4,16 and 400 comparing with those obtained by the mismatch method. For the sulfur emissions the quality factor 4 was better adjusted, the quality factor 16 was better adjusted for the case of arsenic. This was determined by comparing the sum of the quadratic errors between the emissions obtained by the mismatch method and those obtained by iterating the mentioned quality factors. In additions to the modification of a type foundry to be able to ad historical emissions information, the proposed methodology allows to add in the future other nodes that also present emissions and in this way to improve their estimation.
Description
Catalogado desde la version PDF de la tesis.
Keywords
BALANCE METALURGICO, BALANCES DE AZUFRE Y ARSENICO, CODELCO CHILE DIVISION EL TENIENTE, EMISIONES DE AZUFRE Y ARSENICO