Thesis Análisis geométrico de la superficie de un soluto y su efecto en la aproximación de su energía de disolución
Loading...
Date
2019-12
Authors
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Mecánica
Departament
Campus
Campus Casa Central Valparaíso
Abstract
Se propone encontrar modelos implícitos capaces de aproximar la componente no-polar de la energía de solvatación AGnp, y la energía necesaria para la formación de la cavidad del soluto AGcav. Debido a la naturaleza de estas componentes de la energía de solvatación, es que se modelan como funciones de la geometría de las superficies que produce la cavidad del soluto al interior del solvente.
Una de las propiedades más importantes de las interfaces soluto-solvente es la tensión superficial, cuyo comportamiento es afectado por la curvatura que tiene la interfaz y es caracterizado por la longitud de Tolman. Es por esto que el análisis de la curvatura de la superficie de la geometría que representa esta interfaz, podría llevar a una mejor aproximación de las componentes de la energía de solvatación. Son diversas las formas en que se pueden caracterizar los aspectos de una geometría, considerando una malla triangular. Si bien el volumen y el área total se encuentran bien definidos, existen otros cuya complejidad depende de si se realiza una integración por vértice o por panel, como la curvatura, la normal y el área de integración locales. Para algunos aspectos se ha encontrado más de una manera de aproximación, las que se explorarán de forma excluyente en modelos separados.
Como resultado se han obtenido 1442 modelos, los cuales son una combinación de factores, agrupados en siete familias, para la aproximación de las energías AGnp y AGcav. Un par de estos se han concebido con la intención de contrastar la importancia del análisis geométrico de la superficie. Los modelos obtenidos han sido jerarquizados según la correlación que tienen con los datos nominales con que se cuenta.
Los resultados apuntan a que el análisis geométrico de la superficie de los solutos logra una mejor aproximación de las componentes energéticas, obteniéndose una mejor correlación y menores errores que en los casos en que no se consideró un análisis de la geometría. Los resultados también indican que la mejor forma para aproximar la curvatura, para su utilización en modelos de este tipo, es hacerlo mediante un mejor ajuste de una esfera. Esto en contraste del tradicional empleo de la curvatura media.
It is proposed to find implicit models capable of approximating the non-polar component of solvent-free Energy AGnp, and the energy required for the formation of the solute cavity AGcav. Due to the nature of these solvent energy components, they are modeled as functions of the surface geometry produced by the solute cavity within the solvent. One of the most important properties of solute-solvent interfaces is the surface tension, whose behavior is affected by the curvature of the interface and is characterized by the Tolman length. Hence the analysis of the curvature of the surface of the geometry that represents this interface could lead to a better approximation of the components of the energy of solvation. There are several ways in which the aspects of a geometry can be characterized, considering a triangle mesh. Although the volume and the total area are well defined, there are others whose complexity depends on whether a vertex or panel integration is performed, such as the curvature, the normal and the local integration area. For some aspects more than one approach has been found, which will be explored exclusively in separate models. The result has been 1442 models, which are a combination of factors, grouped into seven families, for the approximation of energies AGnp and AGcav. A couple of these have been conceived with the intention of contrasting the importance of surface geometric analysis. The models obtained have been hierarchized according to the correlation they have with the nominal data available. The results indicate that the geometric analysis of the surface of the solutes achieves a better approximation of the energetic components, obtaining a better correlation and fewer errors than in the cases in which an analysis of the geometry was not considered. The results also indicate that the best way to approximate the curvature, for use in models of this type, is to do it through the best fit of a sphere. This is in contrast to the traditional use of mean curvature.
It is proposed to find implicit models capable of approximating the non-polar component of solvent-free Energy AGnp, and the energy required for the formation of the solute cavity AGcav. Due to the nature of these solvent energy components, they are modeled as functions of the surface geometry produced by the solute cavity within the solvent. One of the most important properties of solute-solvent interfaces is the surface tension, whose behavior is affected by the curvature of the interface and is characterized by the Tolman length. Hence the analysis of the curvature of the surface of the geometry that represents this interface could lead to a better approximation of the components of the energy of solvation. There are several ways in which the aspects of a geometry can be characterized, considering a triangle mesh. Although the volume and the total area are well defined, there are others whose complexity depends on whether a vertex or panel integration is performed, such as the curvature, the normal and the local integration area. For some aspects more than one approach has been found, which will be explored exclusively in separate models. The result has been 1442 models, which are a combination of factors, grouped into seven families, for the approximation of energies AGnp and AGcav. A couple of these have been conceived with the intention of contrasting the importance of surface geometric analysis. The models obtained have been hierarchized according to the correlation they have with the nominal data available. The results indicate that the geometric analysis of the surface of the solutes achieves a better approximation of the energetic components, obtaining a better correlation and fewer errors than in the cases in which an analysis of the geometry was not considered. The results also indicate that the best way to approximate the curvature, for use in models of this type, is to do it through the best fit of a sphere. This is in contrast to the traditional use of mean curvature.
Description
Keywords
Energía libre de gibbs, Longitud Tolman, Tensión superficial
