Thesis Evaluación técnica económica de la captura de CO2 directamente del aire mediante carbón activado a escala industrial y domiciliaria
Loading...
Date
2025-04
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Química
Campus
Campus Santiago San Joaquín
Abstract
La crisis climática actual, originada por actividades humanas como la industrialización y el transporte, ha provocado un aumento significativo de las emisiones de CO₂, contribuyendo al calentamiento global y sus consecuencias. Como respuesta, tecnologías como la Captura Directa del Aire (DAC, por sus siglas en inglés) han surgido como soluciones para reducir las concentraciones atmosféricas de CO₂ y cumplir con los objetivos climáticos establecidos en el Acuerdo de París. Entre los métodos DAC, la adsorción química en sólidos destaca por su eficiencia energética, menores costos operativos y mayor escalabilidad, siendo el carbón activado una opción especialmente atractiva debido a su bajo costo, resistencia a la humedad y amplia disponibilidad. Estas características lo posicionan como una alternativa viable para optimizar la captura de CO₂. El presente trabajo tiene como objetivo evaluar técnica y económicamente la captura directa de CO₂ del aire utilizando carbón activado, considerando aplicaciones tanto industriales como domiciliarias. Para ello, se realiza una revisión exhaustiva de las tecnologías existentes, se desarrolla un modelo computacional para analizar la eficiencia de diversos materiales y se estiman los costos asociados (CAPEX, OPEX y LCOC) para capacidades de 1.000, 10.000 y 100.000 toneladas anuales. Además, se diseña un prototipo experimental para validar el rendimiento del carbón activado mediante curvas de ruptura. Los resultados del modelo computacional para un lecho monolítico de carbón activado muestran una adecuada capacidad predictiva de la curva de ruptura, ajustando la velocidad de canal en un factor de 10 para concordar con datos experimentales. A escala industrial, la tecnología basada en carbón activado presenta alta competitividad económica, reduciendo el CAPEX de 1.764 a 190 USD/tCO₂ y el LCOC de 280 a 106 USD/tCO₂ al aumentar la capacidad de 10 a 10.000 tCO₂/año. En el ámbito domiciliario, un prototipo de adsorción por vacío (VSA) alcanza una eficiencia máxima de 18,42 mg por ciclo, con un CAPEX de 113 USD/g CO₂ y un LCOE de 1.357 USD/g CO₂. Sin embargo, los elevados costos limitan su viabilidad. Se propone optimizar el diseño mediante un sistema de adsorción y desorción con temperatura y vacío (TVSA), empleando dos lechos cilíndricos semicontinuos para mejorar la eficiencia y reducir los costos operativos en aplicaciones prácticas.
The current climate crisis, caused by human activities such as industrialization and transportation, has led to a significant increase in CO2 emissions, contributing to global warming and its consequences. In response, technologies like Direct Air Capture (DAC) have emerged as solutions to reduce atmospheric CO2 concentrations and meet the climate goals set in the Paris Agreement. Among DAC methods, chemical adsorption on solids stands out for its energy efficiency, lower operating costs, and higher scalability, with materials like activated carbon positioned as a cost-effective option. Due to its low cost, moisture resistance, and availability, this material provides a viable solution for optimizing CO2 capture. This study aims to assess the technical and economic viability of CO2 capture from the air using activated carbon, considering both industrial and residential applications. A comprehensive review of existing technologies is conducted, a computational model is developed to analyze the efficiency of various materials, and costs (CAPEX, OPEX, and LCOC) are estimated for scales of 1,000, 10,000, and 100,000 tons per year. Additionally, an experimental prototype is designed to validate the performance of activated carbon using breakthrough curves. The computational model for CO2 capture in a monolithic activated carbon bed prove effective in predicting breakthrough curves under isothermal conditions, adjusting the flow rate by a factor of 10 to match experimental data. The activated carbon-based technology show high economic competitiveness at an industrial scale, with a reduction in CAPEX from 1,764 to 190 USD/tCO2 and a decrease in LCOE from 280 to 106 USD/tCO2 as the capacity increased from 10 to 10,000 tCO2/year. At the residential scale, a vacuum swing adsorption (VSA) prototype with a CAPEX of 113 USD/g CO2 and an LCOC of 1,357 USD/g CO2, though high costs limit its viability. It is recommended to optimize the design using TVSA systems and semi-continuous beds to improve efficiency and reduce operational costs for practical applications.
The current climate crisis, caused by human activities such as industrialization and transportation, has led to a significant increase in CO2 emissions, contributing to global warming and its consequences. In response, technologies like Direct Air Capture (DAC) have emerged as solutions to reduce atmospheric CO2 concentrations and meet the climate goals set in the Paris Agreement. Among DAC methods, chemical adsorption on solids stands out for its energy efficiency, lower operating costs, and higher scalability, with materials like activated carbon positioned as a cost-effective option. Due to its low cost, moisture resistance, and availability, this material provides a viable solution for optimizing CO2 capture. This study aims to assess the technical and economic viability of CO2 capture from the air using activated carbon, considering both industrial and residential applications. A comprehensive review of existing technologies is conducted, a computational model is developed to analyze the efficiency of various materials, and costs (CAPEX, OPEX, and LCOC) are estimated for scales of 1,000, 10,000, and 100,000 tons per year. Additionally, an experimental prototype is designed to validate the performance of activated carbon using breakthrough curves. The computational model for CO2 capture in a monolithic activated carbon bed prove effective in predicting breakthrough curves under isothermal conditions, adjusting the flow rate by a factor of 10 to match experimental data. The activated carbon-based technology show high economic competitiveness at an industrial scale, with a reduction in CAPEX from 1,764 to 190 USD/tCO2 and a decrease in LCOE from 280 to 106 USD/tCO2 as the capacity increased from 10 to 10,000 tCO2/year. At the residential scale, a vacuum swing adsorption (VSA) prototype with a CAPEX of 113 USD/g CO2 and an LCOC of 1,357 USD/g CO2, though high costs limit its viability. It is recommended to optimize the design using TVSA systems and semi-continuous beds to improve efficiency and reduce operational costs for practical applications.
Description
Keywords
Captura de carbono, Captura directa del aire (DAC), Adsorción y desorción con temperatura y vacío (TVSA), Emisiones de CO₂, Adsorción por vacío (VSA), Carbón activado, Monolitos, Modelación computacional, Carbón activado de cáscara de coco